Rainfall Threshold of Rainfall-Induced Landslides Based on Laboratory Test

2013 ◽  
Vol 353-356 ◽  
pp. 1011-1014
Author(s):  
Yan Su ◽  
Jun Bing Qiu ◽  
Yue Ting Du

A landslide model test under the artificial rainfall was built according to the rainfll-induced landslide in Fujian mountainous area. The rainfall intensity, the slope types (mainly on vegetation coverage) and the grade of side slope were the main factors in the test. The rainfall threshold of rainfall-induced landslide on shallow bedrock was obtained from the test. The relationship between the cumulative precipitation and slope angle and slope surface types was analyzed from the orthogonal experiment by multiple regression analysis. Results show that most slope failures are caused by the infiltration of rainwater. Conclusion show that when the slope angle and vegetation cover are given, critical hazard threshold can be predicted, and the corresponding landslide sliding time can be gained by combining with the rainfall intensity.

2020 ◽  
Vol 15 (6) ◽  
pp. 745-753
Author(s):  
Toru Danjo ◽  
◽  
Tomohiro Ishizawa

The infiltration of rainfall into a slope surface may affect slope stability; thus, it is important to understand the amount of rainfall infiltration (hereafter referred to as the “infiltration capacity”) for a slope surface layer when evaluating slope stability. This research focuses on slope gradient, a factor affecting the infiltration capacity, and performs two types of water-spraying experiments using pit sand under the same conditions but with different slope gradients. In the first experiment, the surface flow rate and soil loss were measured using an earth-tank model with a horizontal distance of 0.5 m, depth of 0.1 m, and width of 0.2 m to form slope gradients of 2°, 20°, and 40° to clarify the effect of slope gradient on the infiltration capacity. In the second experiment, a water-spraying experiment that closely simulated natural rainfall was performed at a large-scale rainfall facility owned by the National Research Institute for Earth Science and Disaster Resilience (NIED), Japan. This experiment used an earth-tank model with a horizontal distance of 1.21 m, depth of 0.5 m, and width of 0.5 m to form slope gradients of 2°, 10°, 20°, 30°, and 40° with the aim of proposing a quantitative evaluation method for the relationship between the slope gradient and infiltration capacity. The results showed that the soil loss and infiltration capacity increased as the slope gradient increased in the case of the pit sand used in the experiments. This was confirmed to be due to the fact that an increased gradient allowed grains with diameters of <50 μm in the slope surface layer to flow out easily, thereby increasing the infiltration capacity. In addition, the relationship between the rainfall intensity and infiltration capacity revealed that the infiltration capacity varied depending on the rainfall intensity and slope gradient, which is unlike the relationship for constant values such as the permeability coefficient. Moreover, the research findings indicated a strong, positive linear relationship (R2 = 0.98) between the slope gradient and fitting factor Ic. Therefore, the relationship between rainfall intensity and the infiltration capacity could be expressed using the fitting factor Ic. This suggests the possibility of quantitatively evaluating the relationships between rainfall intensity, the infiltration slope gradient, and the infiltration capacity.


2021 ◽  
Vol 10 (9) ◽  
pp. 590
Author(s):  
Li Peng ◽  
Wei Deng ◽  
Ying Liu

As an important component of terrestrial ecosystems, the mountainous areas of southwest China are facing eco-environmental stress due to rapid urbanization. This study analyzed the vegetation dynamics during urbanization in 410 counties in the mountainous area of southwest China using trend analysis and bivariate spatial autocorrelation analysis. The results demonstrate the following: (1) The regional differences in the natural background and the stage of economic development resulted in obvious geographical heterogeneity in the relationship between urbanization and vegetation coverage. (2) The relationship between the rate of urbanization level change (RULC) and the slope of the normalized difference vegetation index (NDVI) (Slope−NDVI) in the mountainous areas of southwest China is characterized by an inverted-U-shaped curve. Based on the inflection point (0.206, 57.60) of the inverted-U-shaped curve, the optimal mean annual RULC is 1.37%. (3) The relief degree of the land surface, the gross domestic product (GDP) change rate, and the slope of temperature change are positively correlated with the Slope−NDVI. Overall, an understanding of how urbanization affects vegetation dynamics can inform decisions concerning ecological restoration and urban–rural development in China.


2016 ◽  
Author(s):  
P. I. A. Kinnell

Abstract. Conceptually, rain has a capacity to cause erosion (rainfall erosivity) and soils have a susceptibility to erosion by rainfall (soil erodibility) but no absolute measure of rainfall erosivity exists. Consequently, soil erodibility is nothing more than an empirical coefficient in the relationship between an index of rainfall erosivity and soil loss. Erosion by rain-impacted flow is influenced by the size, velocity and impact frequency of the raindrops but also flow depth and velocity. Experiments with artificial rainfall falling on sloping surfaces in the field usually do not enable flow depth and velocity to be well measured or controlled. Also, sprays produce artificial rainfall where the spatial uniformity in rainfall intensity, drop size and frequency is often less than desirable. Artificial rainfall produced by pendant drop formers can produce rainfall that has better spatial uniformity. Equipment for controlling flow depth and velocity over eroding surfaces has been developed and used to calibrate the effect of flow depth on the discharge of sediment by rain-impacted flow using artificial rainfall having a uniform drop-size distribution under laboratory conditions. Once calibrated, laboratory experiments can be conducted to rank soils according to their susceptibility to erosion under the flows impacted by the artificial rainfall under conditions where the erosive stress applied to the eroding surface is well controlled.


2012 ◽  
Vol 212-213 ◽  
pp. 40-45 ◽  
Author(s):  
Shun Yang ◽  
Guo Qiang Ou ◽  
Xian Jun Ji ◽  
Jun Wang

The paper reviewed the research and progress of solid materials on the gully system in the world and pointed out the shortage of it. On the condition of hydrodynamics, many papers available concentrated on the relationship between rainfall parameters and debris flow occurrence, rainfall infiltration and surface runoff; while on the solid materials on the gully or slope surface, a lot of researches focused on the flume experiments to analyses the initial condition and debris flow process under hydrodynamic effect together with artificial rainfall. Base on the reviews previous, paper give some prospects of research under hydrodynamic conditions in the futures.


2019 ◽  
Vol 11 (17) ◽  
pp. 4644 ◽  
Author(s):  
Deng ◽  
Fei ◽  
Sun ◽  
Zhang ◽  
Fan ◽  
...  

Phosphorus (P) is the key limiting factor for eutrophication, and the mechanism of P loss from hillslopes is complex. Few attempts have been made to study the processes of P loss through overland flow and interflow from bare weathered granite slopes in Southeast China. Therefore, artificial rainfall simulations were performed to evaluate P loss from bare weathered granite slopes with different slope angles (5°, 8°, 15°, 25°) and different rainfall intensities (1.5, 2.0, 2.5 mm/min). The results show that overland flow increased with rainfall intensity, while it declined with slope angle. Interflow exhibited a single-peak curve with time of runoff. The interflow accounted for 28.53–89.12% of the total runoff yield, and the percentage declined with rainfall intensity and increased with slope angle. Both total phosphorus (TP) concentration (CTP) and TP load (LTP) in overland flow increased with rainfall intensity, and the percentages of LTP in each rainfall event ranged from 51% to 92%. CTP in overland flow distinctly fluctuated, with the maximum appearing on the 25° slope, while the maximum in interflow was observed on the 5° slope. LTP in overland flow was the highest on the 8° slope, and was significantly affected by runoff yield and rainfall intensity (p < 0.01). LTP in interflow was small and was significantly affected by rainfall intensity (p < 0.01). Runoff P was mainly lost through overland flow, dominantly in the form of particulate phosphorus (PP), and P loss through interflow was an important supplementation, mainly in the form of dissolved phosphorus (DP). These results provide underlying insights and scientific background for the control of P loss in bare weathered granite areas.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 538
Author(s):  
Zihao Guo ◽  
Jianen Gao ◽  
Pengcheng Sun ◽  
Shaohui Dou ◽  
Juan Li ◽  
...  

Gully Land Consolidation (GLC) is a proven method to create farmlands and increase crop yields in the Loess Hilly and Gully Region, China. However, GLC influences phreatic water transformation and might cause the farmlands water disasters, such as salinization and swamping. For exploring the influence of GLC on phreatic water transformation and mitigating disasters, a series of indoor experiments were conducted in the artificial rainfall hall. Then, we simulated the phreatic water transformation patterns under more conditions with HYDRUS-3D. Finally, an engineering demonstration in the field was performed to validate our research. The indoor experiments indicated that GLC could increase phreatic water outflow rate 4.39 times and phreatic water coefficient (PWC) 2.86 times with a considerable delay. After calibration and validation with experimental data, the HYDRUS-3D was used to simulate phreatic water transformation under more soil thickness and rainfall intensities. Accordingly, we summarized the relationship among PWC, rainfall intensities, and soil thickness, and therefore suggested a blind ditch system to alleviate farmlands disasters. Field application showed that a blind ditch system could avoid disasters with 3.2 times the phreatic water transformation rate compared to loess. Our research provides implications for sustainable land uses and management in the region with thick soil covers.


Water ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1657
Author(s):  
Jingzhou Zhang ◽  
Shengtang Zhang ◽  
Si Chen ◽  
Ming Liu ◽  
Xuefeng Xu ◽  
...  

To explore the characteristics of overland flow resistance under the condition of sparse vegetative stem coverage and improve the basic theoretical research of overland flow, the resistance characteristics of overland flow were systematically investigated under four slope gradients (S), seven flow discharges (Q), and six degrees of vegetation coverage (Cr). The results show that the Manning roughness coefficient (n) changes with the ratio of water depth to vegetation height (h/hv) while the Reynolds number (Re), Froude number (Fr), and slope (S) are closely related to vegetation coverage. Meanwhile, h/hv, Re, and Cr have strong positive correlations with n, while Fr and S have strong negative correlations with n. Through data regression analysis, a power function relationship between n and hydraulic parameters was observed and sensitivity analysis was performed. It was concluded that the relationship between n and h/hv, Re, Cr, Q, and S shows the same law; in particular, for sparse stem vegetation coverage, Cr is the dominant factor affecting overland flow resistance under zero slope condition, while Cr is no longer the first dominant factor affecting overland flow resistance under non-zero slope condition. In the relationship between n and Fr, Cr has the least effect on overland flow resistance. This indicates that when Manning roughness coefficient is correlated with different hydraulic parameters, the same vegetation coverage has different effects on overland flow resistance. Therefore, it is necessary to study overland flow resistance under the condition of sparse stalk vegetation coverage.


2021 ◽  
Author(s):  
Qiufen Zhang ◽  
Xizhi Lv ◽  
Rongxin Chen ◽  
Yongxin Ni ◽  
Li Ma

&lt;p&gt;The slope runoff caused by rainstorm is the main cause of serious soil and water loss in the loess hilly area, the grassland vegetation has a good inhibitory effect on the slope runoff, it is of great significance to reveal the role of grassland vegetation in the process of runoff generation and control mechanism for controlling soil erosion in this area. In this study, typical grassland slopes in hilly and gully regions of the loess plateau were taken as research objects. Through artificial rainfall in the field, the response rules of slope rainfall-runoff process to different grass coverage were explored. The results show that: (1) The time for the slope flow to stabilize is prolonged with the increase of vegetation coverage, and shortened with the increase of rainfall intensity; (2) At 60 mm&amp;#183;h &lt;sup&gt;&amp;#8722;1&lt;/sup&gt; rainfall intensity, the threshold of grassland vegetation coverage is 75.38%; at 90 mm&amp;#183;h&lt;sup&gt; &amp;#8722;1&lt;/sup&gt; rainfall intensity, the threshold of grassland vegetation coverage is 90.54%; at 120 mm&amp;#183;h &lt;sup&gt;&amp;#8722;1&lt;/sup&gt; rainfall intensity, the impact of grassland vegetation coverage on runoff is not significant; (3) the Reynolds number and Froude number of slope flow are 40.07&amp;#8210;695.22 and 0.33&amp;#8210;1.56 respectively, the drag coefficient is 1.42&amp;#8210;43.53. Under conditions of heavy rainfall, the ability of grassland to regulate slope runoff is limited. If only turf protection is considered, about 90% of grassland coverage can effectively cope with soil erosion caused by climatic conditions in loess hilly and gully regions. Therefore, in loess hilly areas where heavy rains frequently occur, grassland's protective effect on soil erosion is obviously insufficient, and investment in vegetation measures for trees and shrubs should be strengthened.&lt;/p&gt;


Author(s):  
Bappaditya Koley ◽  
Anindita Nath ◽  
Subhajit Saraswati ◽  
Kaushik Bandyopadhyay ◽  
Bidhan Chandra Ray

Land sliding is a perennial problem in the Eastern Himalayas. Out of 0.42 million km2 of Indian landmass prone to landslide, 42% fall in the North East Himalaya, specially Darjeeling and Sikkim Himalaya. Most of these landslides are triggered by excessive monsoon rainfall between June and October in almost every year. Various attempts in the global scenario have been made to establish rainfall thresholds in terms of intensity – duration of antecedent rainfall models on global, regional and local scale for triggering of the landslide. This paper describes local aspect of rainfall threshold for landslides based on daily rainfall data in and around north Sikkim road corridor region. Among 210 Landslides occurring from 2010 to 2016 were studied to analyze rainfall thresholds. Out of the 210 landslides, however, only 155 Landslides associated with rainfall data which were analyzed to yield a threshold relationship between rainfall intensity-duration and landslide initiation. The threshold relationship determined fits to lower boundary of the Landslide triggering rainfall events is I = 4.045 D - 0.25 (I=rainfall intensity (mm/h) and D=duration in (h)), revealed that for rainfall event of short time (24 h) duration with a rainfall intensity of 1.82 mm/h, the risk of landslides on this road corridor of the terrain is expected to be high. It is also observed that an intensity of 58 mm and 139 mm for 10-day and 20-day antecedent rainfall are required for the initiation of landslides in the study area. This threshold would help in improvement on traffic guidance and provide safety to the travelling tourists in this road corridor during the monsoon.


Sign in / Sign up

Export Citation Format

Share Document