A Study on the Differences of Mechanical Properties between CH4 and CO2 Hydrate-Bearing Sediments

2013 ◽  
Vol 353-356 ◽  
pp. 1240-1244 ◽  
Author(s):  
Yuan Luo ◽  
Yong Chen Song ◽  
Wei Guo Liu ◽  
Jia Fei Zhao ◽  
Yun Fei Chen ◽  
...  

The CH4-CO2replacement method to recover CH4from hydrate-bearing sediments has received great attention because it enables the long term storage of CO2and is expected to maintain the stability of gas hydrate-bearing sediments. This paper extends our previous study of the stability of CH4hydrate-bearing sediments to CO2hydrate-bearing sediments to evaluate the safety of the CH4-CO2replacement method. Low temperature, high pressure triaxial compression apparatus was used to measure the mechanical properties of CO2hydrate-bearing sediments. The triaxial tests results for CH4and CO2hydrate-bearing sediments were then compared. It was found that the failure mode of both the CO2and CH4hydrate-bearing sediments was a bulging deformation at mid-height on the samples. Moreover, the stress-strain curves of both the CO2and CH4hydrate-bearing sediments appear to be hyperbolic in shape, and could be divided into three stages: the quasi-elastic stage, the hardening stage and the yield stage. However, the strength of the CO2hydrate-bearing sediments was approximately 15% larger than that of the CH4hydrate-bearing sediments under the same conditions. The results imply that the stability of gas hydrate-bearing sediments could be maintained using the CH4-CO2replacement method to recover CH4from these sediments.

2013 ◽  
Vol 275-277 ◽  
pp. 316-321 ◽  
Author(s):  
Jian Zhang ◽  
Yu Guang Ye ◽  
Chang Ling Liu ◽  
Zhong Ming Sun ◽  
Lei Zhang ◽  
...  

The mechanical properties of gas hydrate-bearing sediments are important basic parameters during natural gas hydrate drilling and exploitation. It’s very hard to get and preserve the actual gas hydrate specimens for the measurements of these characteristics. Experimental techniques for mechanical properties of gas hydrate-bearing sediments are essential and unique because of the special high pressure and low temperature conditions for the stability of gas hydrate. Qingdao Institute of Marine Geology has developed an experimental equipment (Chinese National patent No. ZL 2010 2 0253067.3) to study the variation of mechanical properties along with gas hydrate saturation in different sediments. The combination, configuration and advantages of the equipment, as well as some preliminary experimental results were introduced in this article.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1877
Author(s):  
Kai-Hung Yang ◽  
Gabriella Lindberg ◽  
Bram Soliman ◽  
Khoon Lim ◽  
Tim Woodfield ◽  
...  

Recent advances highlight the potential of photopolymerizable allylated gelatin (GelAGE) as a versatile hydrogel with highly tailorable properties. It is, however, unknown how different photoinitiating system affects the stability, gelation kinetics and curing depth of GelAGE. In this study, sol fraction, mass swelling ratio, mechanical properties, rheological properties, and curing depth were evaluated as a function of time with three photo-initiating systems: Irgacure 2959 (Ig2959; 320–500 nm), lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP; 320–500 nm), and ruthenium/sodium persulfate (Ru/SPS; 400–500 nm). Results demonstrated that GelAGE precursory solutions mixed with either Ig2959 or LAP remained stable over time while the Ru/SPS system enabled the onset of controllable redox polymerization without irradiation during pre-incubation. Photo-polymerization using the Ru/SPS system was significantly faster (<5 s) compared to both Ig2959 (70 s) and LAP (50 s). Plus, The Ru/SPS system was capable of polymerizing a thick construct (8.88 ± 0.94 mm), while Ig2959 (1.62 ± 0.49 mm) initiated hydrogels displayed poor penetration depth with LAP (7.38 ± 2.13 mm) in between. These results thus support the use of the visible light based Ru/SPS photo-initiator for constructs requiring rapid gelation and a good curing depth while Ig2959 or LAP can be applied for photo-polymerization of GelAGE materials requiring long-term incubation prior to application if UV is not a concern.


2020 ◽  
pp. 193229682096365
Author(s):  
Stefan Pleus ◽  
Guido Freckmann ◽  
Annette Baumstark ◽  
Cornelia Haug

Background: Conflicting information is available regarding the stability of glucose concentrations in frozen plasma samples. Clinical trials could benefit from such long-term storage because it would allow usage of a central laboratory with higher-quality laboratory analyzers in contrast to mobile analyzers in a decentralized setting. Methods: In this study, venous blood samples were collected in lithium-heparin gel tubes. Plasma was separated immediately after blood was drawn, and from each of the 21 plasma samples, 6 aliquots were prepared for measurement at 6 time points: immediately and after 2, 4, 6, 8, and 12 weeks. Between sampling and measurement, aliquots were stored at less than −20°C. Transport on dry ice was simulated by placing aliquots in a −80°C freezer for 5 days between weeks 8 and 12. Measurements were performed on a hexokinase-based laboratory analyzer. Average relative differences and corresponding 99% confidence intervals (CIs) were calculated between the stored aliquots’ and the immediately measured aliquots’ glucose concentrations. Glucose concentrations were deemed stable as long as average relative differences were ≤±2.5%. Results: Over the whole 12-weeks duration, the largest average relative difference was −1.82% (99% CI: –2.25% to −1.39%). Shorter storage durations tended to lead to less bias. Conclusion: In this study, the stability of glucose concentrations in frozen plasma samples obtained with lithium-heparin gel tubes could be shown for up to 12 weeks. Future studies should be performed to assess whether this is independent of the glucose analyzer and the type of sampling tube used.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Zheng Lu ◽  
Yang Zhao ◽  
Shaohua Xian ◽  
Hailin Yao

Dynamic resilient modulus is the design index of highway subgrade design code in China, which is significantly affected by the traffic loads and environmental changes. In this study, dynamic triaxial tests were conducted to investigate the influence of moisture content, compaction degree, cyclic deviator stress, and confining pressure on lime-treated expansive soil. The suitability of UT-Austin model to lime-treated expansive soils was verified. The results indicate that the dynamic resilient modulus of lime-treated expansive soils increases nonlinearly with the increase of compaction degree, while decreases nonlinearly with the increase of dynamic stress level. The dynamic resilient modulus decreases linearly with the increase of moisture content and increases linearly with the increase of confining pressure. Moreover, the moisture content has a more significant effect on the dynamic resilient modulus of lime-treated expansive soil. Therefore, it is necessary to ensure the stability of soil humidity state and its excellent mechanical properties under long-term cyclic loading for the course of subgrade filling and service. Finally, the calculated results of the UT-Austin model for dynamic resilient modulus show a good agreement with the test results.


2008 ◽  
Vol 1 (1) ◽  
pp. 67-78 ◽  
Author(s):  
M. Hafner ◽  
M. Sulyok ◽  
R. Schuhmacher ◽  
C. Crews ◽  
R. Krska

In this paper the stability and degree of epimerisation of six major ergot alkaloids at three different temperature levels (-20 °C, +4 °C and +20 °C) over periods of 18 hours and six weeks is reported for the first time. The behaviour of ergometrine, ergocornine, ergocristine, α-ergocryptine, ergosine and ergotamine was thoroughly studied in seven solvents which are employed for the preparation of calibrants and extraction mixtures, respectively. Moreover, the stability of the ergot alkaloids was tested in different cereal extracts (rye, wheat, barley, oats) for 1, 2 and 6 days. Of the toxins tested, the ergopeptide-type toxins ergosine, ergotamine, ergocornine, α-ergocryptine and ergocristine showed similar behaviour patterns. The simple lysergic acid derivative ergometrine was more stable and showed hardly any epimerisation to ergometrinine, with the sum of both epimers remaining constant in all seven solvents. The ergopeptides tested show variable epimerisation tendencies, and were also less stable during six weeks at 20 °C. Ergosine showed the highest degree of epimerisation (43% after 6 weeks at 20 °C). In general, the order of epimerisation promotion was methanol/dichloromethane > acetonitrile/buffer > extraction mix > stabilising solution > acetonitrile >> chloroform. Long-term storage at room temperature can only be carried out in chloroform, which showed no epimerisation for all toxins even at 20 °C and also kept the sum of R and S forms constant, which indicates no formation of aci-epimers or other degradation products. Long-term storage of ergot alkaloids in acetonitrile, the most convenient solvent with respect to HPLC analysis, should be carried out at temperatures of -20 °C or below. The constant epimer ratio of all ergot alkaloids in the extraction mixture acetonitrile/ammonium carbonate buffer (200 mg/l; 92:8, v/v) during an HPLC run (18 hours) demonstrates the stability of the toxins in this extraction mixture.


2019 ◽  
Vol 974 ◽  
pp. 187-194 ◽  
Author(s):  
Nikolay V. Lyubomirskiy ◽  
Tamara A. Bakhtina ◽  
Alexander S. Bakhtin ◽  
Sergey I. Fedorkin

This paper presents the lime binding forced carbonate-hardening materials properties formation study and determins the stability of these properties during long-term storage and use under normal conditions. The tests showed these materials stability properties over time, confirming the strength and density growth of the test samples after long storage due to the calcium hydroxide recrystallization completion into calcium carbonate processes. Also, the results of the samples carbonate hardening study under natural conditions during 18 months are presented. An efficiency assessment of forced carbonate hardening as one of the methods of recycling technogenic CO2 in order to reduce its emissions in the atmosphere, and, in the result, to obtain high-quality construction materials has been made.


2019 ◽  
Vol 116 ◽  
pp. 00002 ◽  
Author(s):  
Imad Rezakalla Antypas ◽  
Ghias Kharmanda ◽  
Alexey Dyachenko ◽  
Tatiana Savostina

During the rubber long-term storage in the open air and under the influence of certain temperatures, there is a real threat to the environment where environmental damages cannot be ignored. The objective of this paper is to study the mechanical properties of rubber during its processing by vulcanization after adding some materials to improve their properties. The used materials are: rubber from tires where the proportion of rubber varies from 70-78%, vulcanization granules of rubber, non-vulcanized natural NR rubber, and granulated sulphur. Curves of stress-strain of the recycled rubber are modelled at different diameters of the granules added to the materials for vulcanization removal. As result, the improvement of the mechanical properties are obtained by increasing the diameter of the granules but there a threshold which should not be exceeded.


2018 ◽  
Vol 60 ◽  
pp. 00028
Author(s):  
Mykola Zotsenko ◽  
Larysa Pedchenko ◽  
Andrii Manhura

The work objective is to substantiate the technical bases for the production of gas hydrate blocks directly on-site for further transportation and storage in above ground storages, as an alternative to transporting and storing gas in underground gas storages. The theoretical bases have been considered and processes of gas hydrate blocks producing, physical-mechanical characteristics of artificial hydrates with the purpose of determining the conditions of their storage and prolonged storage were tested in laboratory conditions. The construction of above ground gas hydrate storage in the form of a building, partially deepened in a ground, which is separated from the environment by a wall of gravel cement elements made by the mixing method were substantiated. It is proved that such a constructive solution for a long-term storage of gas hydrate blocks is the most economical in terms of energy consumption to maintain internal negative temperature.


2012 ◽  
Vol 9 (75) ◽  
pp. 2551-2562 ◽  
Author(s):  
Marjorie S. Austero ◽  
Amalie E. Donius ◽  
Ulrike G. K. Wegst ◽  
Caroline L. Schauer

Chitosan (CS), the deacetylated form of chitin, the second most abundant, natural polysaccharide, is attractive for applications in the biomedical field because of its biocompatibility and resorption rates, which are higher than chitin. Crosslinking improves chemical and mechanical stability of CS. Here, we report the successful utilization of a new set of crosslinkers for electrospun CS. Genipin, hexamethylene-1,6-diaminocarboxysulphonate (HDACS) and epichlorohydrin (ECH) have not been previously explored for crosslinking of electrospun CS. In this first part of a two-part publication, we report the morphology, determined by field emission scanning electron microscopy (FESEM), and chemical interactions, determined by Fourier transform infrared microscopy, respectively. FESEM revealed that CS could successfully be electrospun from trifluoroacetic acid with genipin, HDACS and ECH added to the solution. Diameters were 267 ± 199 nm, 644 ± 359 nm and 896 ± 435 nm for CS–genipin, CS–HDACS and CS–ECH, respectively. Short- (15 min) and long-term (72 h) dissolution tests (T 600 ) were performed in acidic, neutral and basic pHs (3, 7 and 12). Post-spinning activation by heat and base to enhance crosslinking of CS–HDACS and CS–ECH decreased the fibre diameters and improved the stability. In the second part of this publication, we report the mechanical properties of the fibres.


Sign in / Sign up

Export Citation Format

Share Document