scholarly journals New crosslinkers for electrospun chitosan fibre mats. I. Chemical analysis

2012 ◽  
Vol 9 (75) ◽  
pp. 2551-2562 ◽  
Author(s):  
Marjorie S. Austero ◽  
Amalie E. Donius ◽  
Ulrike G. K. Wegst ◽  
Caroline L. Schauer

Chitosan (CS), the deacetylated form of chitin, the second most abundant, natural polysaccharide, is attractive for applications in the biomedical field because of its biocompatibility and resorption rates, which are higher than chitin. Crosslinking improves chemical and mechanical stability of CS. Here, we report the successful utilization of a new set of crosslinkers for electrospun CS. Genipin, hexamethylene-1,6-diaminocarboxysulphonate (HDACS) and epichlorohydrin (ECH) have not been previously explored for crosslinking of electrospun CS. In this first part of a two-part publication, we report the morphology, determined by field emission scanning electron microscopy (FESEM), and chemical interactions, determined by Fourier transform infrared microscopy, respectively. FESEM revealed that CS could successfully be electrospun from trifluoroacetic acid with genipin, HDACS and ECH added to the solution. Diameters were 267 ± 199 nm, 644 ± 359 nm and 896 ± 435 nm for CS–genipin, CS–HDACS and CS–ECH, respectively. Short- (15 min) and long-term (72 h) dissolution tests (T 600 ) were performed in acidic, neutral and basic pHs (3, 7 and 12). Post-spinning activation by heat and base to enhance crosslinking of CS–HDACS and CS–ECH decreased the fibre diameters and improved the stability. In the second part of this publication, we report the mechanical properties of the fibres.

World Science ◽  
2019 ◽  
Vol 1 (11(51)) ◽  
pp. 25-30
Author(s):  
Подрезов Ю. М. ◽  
Ремез М. В. ◽  
Холявко В. В. ◽  
Прокопчук М. Д.

The temperature and velocity sensitivity of the mechanical properties of TiAl-based alloys were investigated. The structure was determined by scanning electron microscopy in SEI mode. Mechanical properties were determined by the results of tensile and bending tests. It was found that the temperature and velocity dependence of the mechanical properties in alloys with 47% Al is practically absent. This makes them promising for use as structural materials, due to the stability of their properties.


Author(s):  
Li Li-Sheng ◽  
L.F. Allard ◽  
W.C. Bigelow

The aromatic polyamides form a class of fibers having mechanical properties which are much better than those of aliphatic polyamides. Currently, the accepted morphology of these fibers as proposed by M.G. Dobb, et al. is a radial arrangement of pleated sheets, with the plane of the pleats parallel to the axis of the fiber. We have recently obtained evidence which supports a different morphology of this type of fiber, using ultramicrotomy and ion-thinning techniques to prepare specimens for transmission and scanning electron microscopy.


2018 ◽  
Vol 52 (2) ◽  
pp. 379-385 ◽  
Author(s):  
S. L. Stephenson ◽  
Yu. K. Novozhilov ◽  
P. Wellman

A new species of Cribraria, described herein as C. bicolor, appeared in moist chamber cultures on samples of the bark of Eucalyptus sp. collected at two localities in Australia. The morphology of representative specimens was examined by light and scanning electron microscopy, and micrographs of relevant morphological details of sporocarps and spores are provided. The species has a number of distinct and unique morphological features, including a glossy bright-violet globose sporotheca and a two-colored long stalk which is bright-red over the lower one-third and light yellow or lemon-yellow over the upper two-thirds. The combination of these characteristics as well as a shallow calyculus which is dark-violet when viewed under a dissecting microscope and bright red in transmitted light when mounted in lactophenol makes C. bicolor a well-defined morphospecies when compared to all other species of Cribraria. The stability of the taxonomic characters of the species was confirmed by an examination of a number of specimens.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Biao Xiang ◽  
Xingxing Wang ◽  
Gang Wu ◽  
Yichen Xu ◽  
Menghan Wang ◽  
...  

AbstractNumerous factors can influence the force exerted by clear aligners on teeth. This study aimed to investigate the stability of the force delivered by two different material appliances. 90 clear aligners with 2 materials and three different activations were designed and fabricated. Then, a device was employed to measure the force generated by the two types of PET-G material appliances immersed in artificial saliva for 0, 3, 7, 10, 14 days. Scanning electron microscopy was applied to observe the morphologic alterations on the aligner surfaces, respectively. The forces generated by different activation appliance exhibited differently, 0.0 mm < 0.1 mm < 0.2 mm. In addition, increasing the immersion times and the orthodontic force also decreased, but the forces decreased differently. Compared with the forces of conventional PETG appliances with 0.20 mm activation, the modified PETG appliances with the same activation exhibited significantly higher mean force. When comparing the mean force for modified PETG appliances after 10 and 14 days with conventional PETG appliances, the delivery forces exhibited significant differences (P < 0.05). The force delivered by both materials decreased obviously following artificial saliva immersion, and the force generated by modified aligners exhibited better stability than conventional aligners.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2174
Author(s):  
Diana Gregor-Svetec ◽  
Mirjam Leskovšek ◽  
Blaž Leskovar ◽  
Urška Stanković Elesini ◽  
Urška Vrabič-Brodnjak

Polylactic acid (PLA) is one of the most suitable materials for 3D printing. Blending with nanoparticles improves some of its properties, broadening its application possibilities. The article presents a study of composite PLA matrix filaments with added unmodified and lignin/polymerised lignin surface-modified nanofibrillated cellulose (NFC). The influence of untreated and surface-modified NFC on morphological, mechanical, technological, infrared spectroscopic, and dynamic mechanical properties was evaluated for different groups of samples. As determined by the stereo and scanning electron microscopy, the unmodified and surface-modified NFCs with lignin and polymerised lignin were present in the form of plate-shaped agglomerates. The addition of NFC slightly reduced the filaments’ tensile strength, stretchability, and ability to absorb energy, while in contrast, the initial modulus slightly improved. By adding NFC to the PLA matrix, the bending storage modulus (E’) decreased slightly at lower temperatures, especially in the PLA samples with 3 wt% and 5 wt% NFC. When NFC was modified with lignin and polymerised lignin, an increase in E’ was noticed, especially in the glassy state.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 652
Author(s):  
Divine Sebastian ◽  
Chun-Wei Yao ◽  
Lutfun Nipa ◽  
Ian Lian ◽  
Gary Twu

In this work, a mechanically durable anticorrosion superhydrophobic coating is developed using a nanocomposite coating solution composed of silica nanoparticles and epoxy resin. The nanocomposite coating developed was tested for its superhydrophobic behavior using goniometry; surface morphology using scanning electron microscopy and atomic force microscopy; elemental composition using energy dispersive X-ray spectroscopy; corrosion resistance using atomic force microscopy; and potentiodynamic polarization measurements. The nanocomposite coating possesses hierarchical micro/nanostructures, according to the scanning electron microscopy images, and the presence of such structures was further confirmed by the atomic force microscopy images. The developed nanocomposite coating was found to be highly superhydrophobic as well as corrosion resistant, according to the results from static contact angle measurement and potentiodynamic polarization measurement, respectively. The abrasion resistance and mechanical durability of the nanocomposite coating were studied by abrasion tests, and the mechanical properties such as reduced modulus and Berkovich hardness were evaluated with the aid of nanoindentation tests.


2021 ◽  
pp. 095400832110055
Author(s):  
Yang Wang ◽  
Yuhui Zhang ◽  
Yuhan Xu ◽  
Xiucai Liu ◽  
Weihong Guo

The super-tough bio-based nylon was prepared by melt extrusion. In order to improve the compatibility between bio-based nylon and elastomer, the elastomer POE was grafted with maleic anhydride. Scanning Electron Microscopy (SEM) and Thermogravimetric Analysis (TGA) were used to study the compatibility and micro-distribution between super-tough bio-based nylon and toughened elastomers. The results of mechanical strength experiments show that the 20% content of POE-g-MAH has the best toughening effect. After toughening, the toughness of the super-tough nylon was significantly improved. The notched impact strength was 88 kJ/m2 increasing by 1700%, which was in line with the industrial super-tough nylon. X-ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC) were used to study the crystallization behavior of bio-based PA56, and the effect of bio-based PA56 with high crystallinity on mechanical properties was analyzed from the microstructure.


2003 ◽  
Vol 18 (9) ◽  
pp. 2050-2054 ◽  
Author(s):  
Marcello Gombos ◽  
Vicente Gomis ◽  
Anna Esther Carrillo ◽  
Antonio Vecchione ◽  
Sandro Pace ◽  
...  

In this work, we report on the observation of Nd1Ba6Cu3O10,5 (Nd163) phase of the NdBaCuO system in melt-textured Nd123 bulk samples grown from a mixture of Nd123 and Nd210 phase powders. The observation was performed with polarized light optical microscopy and scanning electron microscopy–energy dispersive x-ray analyses. Images of the identified phase crystals show an aspect quite different from Nd422 crystals. Unexpectedly, Nd163 was individuated, even in “pure” Nd123 samples. Moreover, after long exposure to air, Nd163 disappeared completely in samples synthesized from powders containing Nd210. Thermogravimetry analyses of powders show that the stability of this phase in air is limited to temperatures higher than 900 °C, so Nd163 is unstable and highly reactive at room temperature. Moreover, an explanation of the observation of Nd163 in Nd210 free samples, based on the spontaneous formation of Nd163 phase in a Nd123 melt, is proposed.


2018 ◽  
Vol 186 ◽  
pp. 02001
Author(s):  
Teng-wei Zhu ◽  
Cheng-liang Miao ◽  
Zheng Cheng ◽  
Zhipeng Wang ◽  
Yang Cui ◽  
...  

The influence of the mechanical properties of X70 pipeline steel under different annealing temperature was studied. The corresponding microstructure was investigated by the Field Emission Scanning Electron Microscopy. The results showed that the yield strength and the tensile strength both experienced from rise to decline with the increase of annealing temperature. The grain sizes were coarse and a large amount of cementite precipitated due to preserving temperature above 550 °, which induced matrix fragmentation and deteriorate the -10 ° DWTT Toughness. There were little changes on the microstructure and mechanical properties when the annealing temperature was under 500 °.


2009 ◽  
Vol 1187 ◽  
Author(s):  
Jakob R Eltzholtz ◽  
Marie Krogsgaard ◽  
Henrik Birkedal

AbstractBiology has evolved several strategies for attachment of sedentary animals. In the bivalves, byssi abound and the best known example being the protein-based byssus of the blue mussel and other Mytilidae. In contrast the bivalve Anomia sp. has a single calcified thread. The byssus is hierarchical in design and contains several different types of structures as revealed by scanning electron microscopy images. The mechanical properties of the byssus are probed by nanoindentation. It is found that the mineralized part of the byssus is very stiff with a reduced modulus of about 67 GPa and a hardness of ˜3.7 GPa. This corresponds to a modulus roughly 20% smaller than that of pure calcite and a hardness that is about 20% larger than pure calcite. The results reveal the importance of microstructure on mechanical performance.


Sign in / Sign up

Export Citation Format

Share Document