Dynamic Response and Internal Force of Partially Embedded Single Pile with Distributed Loads

2013 ◽  
Vol 353-356 ◽  
pp. 324-328
Author(s):  
Hong Yong Lv ◽  
Qing Ren

Dynamic characteristics of pile under distributed loads have aroused strong attention in the engineering field. Based on the Winkler beam model, transfer matrix method is used to build lateral vibration model for the partially embedded single pile with distributed loads. The method for solving pile deformation and internal force is shown. The influence to deformation and internal forces of partially embedded pile by load form is analyzed.

2015 ◽  
Vol 2015 ◽  
pp. 1-12
Author(s):  
Hai Shi ◽  
Mingzhou Bai ◽  
Chao Li ◽  
Yunlong Zhang ◽  
Gang Tian

The current approach, which is based on conformal transformation, is to map micropile holes in comparison with unit circle domain. The stress field of soil around a pile plane, as well as the plane strain solution to displacement field distribution, can be obtained by adopting complex variable functions of elastic mechanics. This paper proposes an approach based on Winkler Foundation Beam Model, with the assumption that the soil around the micropiles stemmed from a series of independent springs. The rigidity coefficient of the springs is to be obtained from the planar solution. Based on the deflection curve differential equation of Euler-Bernoulli beams, one can derive the pile deformation and internal force calculation method of micropile composite structures under horizontal load. In the end, we propose reinforcing highway landslides with micropile composite structure and conducting on-site pile pushing tests. The obtained results from the experiment were then compared with the theoretical approach. It has been indicated through validation analysis that the results obtained from the established theoretical approach display a reasonable degree of accuracy and reliability.


2020 ◽  
Vol 319 ◽  
pp. 01001
Author(s):  
Anfeng Zhou ◽  
Daokui Li ◽  
Shiming Zhou ◽  
Da Cui ◽  
Xuan Zhou

In order to ensure the safety of the missile-canister system in silo during the earthquake, a modified transfer matrix method is provided to study the dynamic characteristics of the system. Firstly, a discrete viscoelastic connected double-beam model is developed taking account of the structural nonuniformity and the discrete distribution of the adapters. Secondly, the transfer matrix method of a single beam is modified to solve the problem of discrete connection between the two beams of the double-beam model. Then the natural circular frequencies and mode shapes are calculated by the proposed method, comparing with the finite element method (FEM). Finally, the influence of the stiffness of radial vibration isolators and adapters on the dynamic characteristics of the system is analysed. The comparison shows that the results of the proposed method are well consistent with the FEM calculations and the proposed method is validated. The variations of the first six natural circular frequencies with radial vibration isolator stiffness and adapter stiffness are obtained, which provides a basis for the seismic-relieving design.


2017 ◽  
Vol 10 (4) ◽  
pp. 937-956 ◽  
Author(s):  
P. G. C. Amaral ◽  
C. E. N. Mazzilli

ABSTRACT This paper resorts to a simplified dynamic analysis methodology for the study of vibrations in railway bridges produced by the passage of a typical passenger train, or EUT (Electric Unit Train). It starts from a model with fifteen degrees-of-freedom, namely vertical (bounce) and horizontal displacements (sway) and rotations about the longitudinal (roll), transverse (pitch) and vertical (yaw) axes. In this methodology, dynamic models of the train and the bridge are assumed to be initially uncoupled, yet being bound by the interaction train-bridge forces. Thus, the loads are evaluated for the train running on a rigid and fixed deck, considering geometric irregularities, different for each rail line, in both the vertical and horizontal track planes, as well as in the wheels. The contact forces are statically condensed at the vehicle’s centre of gravity and applied on a simplified 3D beam model. To represent the train passage over the bridge, functions are used to describe the interaction forces at each node of the beam model, as time evolves. Thus, it is possible to identify the dynamic response caused by the geometric irregularities and also evaluate the dynamic amplification obtained for any internal force, which is compared to the impact coefficient proposed by the Brazilian standards for the design of railway bridges (NBR 7187), used in quasi-static analysis. For the sake of an illustration, a thirty-six-metre-span concrete bridge with box girder section was considered. A study was carried out to find out the parameters of the irregularity functions that could potentially lead to maximal amplification of internal forces in the bridge.


2014 ◽  
Vol 580-583 ◽  
pp. 2962-2965
Author(s):  
De Cheng Fu ◽  
Yu Hui Wen ◽  
Lei Wang

Based on material mechanics theory that loads-internal force-deformation relationship of rod, this paper establish elastic foundation beam model, and establish loads-internal force-deformation differential equation of piles and columns, and identified boundary conditions according to mechanical analysis of piles and columns, Based on the boundary conditions, deformation coordination and internal force equilibrium conditions, solving differential equations, then obtain column - pile components’ internal forces. This method has good mechanical model support, and using mathematical computing software can derive the analytical expressions.


2013 ◽  
Vol 706-708 ◽  
pp. 1405-1408
Author(s):  
Xi Ping Guo ◽  
Shuang Zhou

Stress and deformation analysis of 950 mill housing was done by means of ANSYS to calculate the maximum stress and deformation. Strength and stiffness of the mill roll were checked to meet requirements. Carries on the modal analysis to the rolling-mill housing, obtains its first 10 steps the natural frequency and the mode of vibration, through the vibration model diagram analysis frame of the weak link,and it is significant for similar mill housing designs.


Author(s):  
B W Huang

The dynamic characteristics of high-speed drilling were investigated in this study. To improve quality and produce a higher production rate, the dynamic characteristics of the drilling process need to be studied. A pre-twisted beam is used to simulate the drill. The moving Winkler-type elastic foundation is used to approximate the drilling process. A time-dependent vibration model for drilling is presented. The spinning speed, pre-twisted angle and thrust force effects of the drill are considered. The numerical analysis indicates that the natural frequency is suddenly reduced as the drill moves into a workpiece.


2012 ◽  
Vol 446-449 ◽  
pp. 429-434
Author(s):  
Rui Ting Ma

In this paper, the differential element of constant-section silo wall suffering from axially symmetric load is analyzed. From the results of constant-section silo, the author derives the displacements and internal forces of variable cross-section silo. Through a specific example, this paper compares the displacements , internal forces and concrete consumption of variable cross-section silo with those of constant-section silo, and discusses the merits of variable cross-section silo.


2011 ◽  
Vol 243-249 ◽  
pp. 1646-1650
Author(s):  
Wen Ping Li ◽  
Shu Li Chen ◽  
Mu Biao Su

In this paper, the vehicle-bridge lateral vibration mechanism was analyzed; the vehicle-bridge vibration model was built and the lateral reinforcement schemes of open steel plate bridges were designed. Numbers of analysis were carried out for the lateral vibration of 40m deck steel plate bridges before and after reinforcement, under input of random artificial hunting waves and track irregularity. The results showed that, the frequency of hunting motion is approaching loaded frequency of the girder. The larger lateral amplitude appears on the bridge when the hunting wavelength is around 8~9m and the velocity of the train is around 55~70km/h. The wavelength is longer, the resonant velocity of the bridge is higher.


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 455 ◽  
Author(s):  
Monika Zaczynska ◽  
Zbigniew Kolakowski

The distribution of the internal forces corresponding to the individual buckling modes of lip-channel (LC) beams is investigated using the Semi Analytical Method (SAM) and the Finite Element Method (FEM). Channel section beams made of 8-layered GFRP (Glass Fiber Reinforced Polymer) laminate with three different layer arrangements were considered. The effect of the internal forces on the non-linear first-order coefficients corresponding to the interactive buckling was also studied. Moreover, distributions of the internal forces corresponded to the loading, leading to structure failure for which the load-carrying capacity was determined. The results indicated a high influence of the Nx internal force component on the buckling loads and load-carrying capacity of the LC-beams.


Sign in / Sign up

Export Citation Format

Share Document