Modal Analysis and Dynamic Test of Steel Slag Vehicle

2013 ◽  
Vol 397-400 ◽  
pp. 564-567 ◽  
Author(s):  
Kun Li Mao

Steel slag vehicles with tilting arm are advanced equipment used in iron and steel factory for short distance delivery. With great impact force and severe vibration when pouring steel slag, strength of equipment structure must be enough. In product design, theoretical study and simulation of steel slag vehicles were completed using commercial finite element software and dynamics software. Static strength and dynamic tests of some steel slag vehicle were finished using dynamic and static stain instruments, acceleration transducer in order to verify the computer analysis result. The modal analysis result of steel slag vehicle, the field dynamic test procedure and data process are shown in this article. In the end of paper, conclusions are drawn useful for design and manufacture of heavy-duty equipment such as steel slag vehicles.

2020 ◽  
Vol 309 ◽  
pp. 281-287
Author(s):  
Kristína Bezručová ◽  
Radim Nečas ◽  
Jan Koláček

The publication outlines the issue of the experimental determination of modal parameters of structures using a method called operational modal analysis. The principle of the method and possible approaches of calculation of modal parameters are presented. An example of the method’s application is the determination of mode shapes and frequencies of the repaired footbridge in Kroměříž where the dynamic test was performed twice – before and after reinforcement of the structure. The results of both dynamic tests and their comparisons with the results of the calculation model performed in the ANSYS environment are presented in this article. Additionally, and integral to this article is a description of the completed footbridge reconstruction.


2015 ◽  
Vol 137 (4) ◽  
Author(s):  
Iñigo Ortega-Fernández ◽  
Javier Rodríguez-Aseguinolaza ◽  
Antoni Gil ◽  
Abdessamad Faik ◽  
Bruno D’Aguanno

Slag is one of the main waste materials of the iron and steel manufacturing. Every year about 20 × 106 tons of slag are generated in the U.S. and 43.5 × 106 tons in Europe. The valorization of this by-product as heat storage material in thermal energy storage (TES) systems has numerous advantages which include the possibility to extend the working temperature range up to 1000 °C, the reduction of the system cost, and at the same time, the decrease of the quantity of waste in the iron and steel industry. In this paper, two different electric arc furnace (EAF) slags from two companies located in the Basque Country (Spain) are studied. Their thermal stability and compatibility in direct contact with the most common heat transfer fluids (HTFs) used in the concentrated solar power (CSP) plants are analyzed. The experiments have been designed in order to cover a wide range of temperature up to the maximum operation temperature of 1000 °C corresponding to the future generation of CSP plants. In particular, three different fluids have been studied: synthetic oil (Syltherm 800®) at 400 °C, molten salt (Solar Salt) at 500 °C, and air at 1000 °C. In addition, a complete characterization of the studied slags and fluids used in the experiments is presented showing the behavior of these materials after 500 hr laboratory-tests.


2007 ◽  
Vol 340-341 ◽  
pp. 223-228
Author(s):  
Ying Fang Fan ◽  
Zhi Qiang Hu ◽  
Jing Zhou

The structural behavior of an old six-span reinforced concrete arch bridge, which has been in service for about 40 years, is investigated. Field monitoring (inclusive of test of material property, static and dynamic test of the bridge) was conducted, static and dynamic responses of the bridge are obtained. Based on the primitive bridge, a scaled one-span bridge model was fabricated by organic-glasses. Both the static and dynamic tests were executed on the bridge model in the laboratory. Since the arch rib is the crucial member for the arch bridge, 7 notches were cut on both arch ribs of the bridge model to simulate different damages of the arch rib. Mechanical responses of the bridge with different damages on the arch ribs were achieved. FEM analyses were preformed on the bridge as well. Numerical results show good agreement with the experimental results.


2002 ◽  
Author(s):  
Raymond J. Hughes ◽  
Lance K. Lewis ◽  
Barry M. Hare ◽  
Yoshiyuki Ishikawa ◽  
Kazuo Iwasaki ◽  
...  
Keyword(s):  

2021 ◽  
Vol 2113 (1) ◽  
pp. 012061
Author(s):  
Jianmin Wang ◽  
Dong Liu ◽  
Yi Bian

Abstract The finite element modelling, mesh generation and modal analysis of the rotor worktable are carried out by combining the analysis technology of finite element software in this paper. Then, the software analysis results and the actual experimental results are compared and analyzed, so as to get the causes of error, which can provide good basic data for the use of the rotor table in the future that could better meet the needs of scientific research and teaching.


Author(s):  
A. A Raheem

Concrete is strong in compression but weak in tension hence, considerable effort is required to improve concrete’s tensile strength by the use of pre-stressed concrete and addition of admixtures or additives. In this study, the use of recycled iron and steel slag (RISS) aggregate to improve the tensile strength of concrete was considered. The paper assessed the mineralogical composition of RISS and granite aggregates, and gradation. It also determines the effects of RISS aggregate on the flexural strength of concrete beams of 150 × 150 × 600 mm containing 0, 10, 20, 40 and 60% RISS aggregate replacement in mix ratios 1:1½:3, 1:2:4 and 1:3:6 with water cement ratios 0.65,0.60 and 0.55 respectively. Diffractograph of RISS and granite aggregate showed that RISS contains Magnetite, Ilmenite and Quartz, while granite contains Quartz, Annite, Microcline and Albite as the predominant minerals. The coefficient of uniformity and concavity of RISS and granite aggregate for maximum aggregate size of 37.5 mm are 4.35 and 1.33; and 4.64 and 1.76 respectively. Both aggregates contain quartz as the predominant mineral and are well graded. The result of the Flexural strength at 28 days curing is within 0.135 – 0.250 MPa specified byBS8500 – 2:2015. Flexural strength of concrete beams cast with RISS aggregate is relatively higher than concrete cast with granite aggregate. Flexural strength, a measure of tensile strength of concrete is improved as percentage RISS aggregate increased.


2014 ◽  
Author(s):  
Kimberley Ho ◽  
Tao Chen ◽  
Ping Chen ◽  
Thomas Hagen ◽  
Harry Montgomerie ◽  
...  

Abstract Halite deposition is most commonly observed in gas/gas condensate fields with low water cut, high TDS produced brines and high temperature. Halite is notoriously difficult to inhibit and there are limited studies focused on halite due to it being incredibly challenging to have an effective test methodology under laboratory conditions that reflect the field conditions. The mechanisms of halite inhibition are unclear. In the published literature, static jar testing is primarily used to evaluate the performance of halite inhibitors. It is not representative of dynamic field conditions and provides limited information of halite inhibition. A new methanol driven dynamic test methodology has been developed alongside a novel jar test procedure, which together provides an effective methodology to evaluate halite inhibition under both static and dynamic conditions and provides an insight into the understanding of the mechanisms of halite inhibition. Using these novel test methodologies, four short-listed inhibitor chemistries including environmentally acceptable inhibitors were assessed and categorised into two types based on the understanding of the mechanism. ➤ Nucleation/growth inhibitors. Inhibitors reduce the nucleation/growth of halite crystals and give good performance under both static and dynamic test conditions.➤ Dispersion inhibitors. Inhibitor doesn't stop the nucleation/growth of halite crystals and gives poor performance under static conditions, but good performance under dynamic conditions due to dispersion effect. Both types of halite inhibitors have been successfully deployed in the fields through continuous injection or batch treatment. Coreflood tests were carried out to confirm the potential risk of formation damage during downhole batch treatment. Other deployment methods have been discussed such as through methanol injection line as both inhibitors are fully methanol compatible. This paper will give a comprehensive study of halite inhibition for challenged wells, including prediction, novel methodology, program of laboratory qualification, mechanism understanding and field deployment, coupled to the development of a chemical technology toolbox to design field halite applications. The value that a fuller understanding of halite control gives the industry is the ability to reduce/eliminate water wash application to control halite formation and so improve well operation time. If halite inhibition is considered at the capex phase of field development, provisions can be made for chemical injection facilities to maintain uninterrupted production.


Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2084 ◽  
Author(s):  
Piotr Mackiewicz ◽  
Antoni Szydło

We present two methods used in the identification of viscoelastic parameters of asphalt mixtures used in pavements. The static creep test and the dynamic test, with a frequency of 10 Hz, were carried out based on the four-point bending beam (4BP). In the method identifying viscoelastic parameters for the Brugers’ model, we included the course of a creeping curve (for static creep) and fatigue hysteresis (for dynamic test). It was shown that these parameters depend significantly on the load time, method used, and temperature and asphalt content. A similar variation of parameters depending on temperature was found for the two tests, but different absolute values were obtained. Additionally, the share of viscous deformations in relation to total deformations is presented, on the basis of back calculations and finite element methods. We obtained a significant contribution of viscous deformations (about 93% for the static test and 25% for the dynamic test) for the temperature 25 °C. The received rheological parameters from both methods appeared to be sensitive to a change in asphalt content, which means that these methods can be used to design an optimal asphalt mixture composition—e.g., due to the permanent deformation of pavement. We also found that the parameters should be determined using the creep curve for the static analyses with persistent load, whereas in the case of the dynamic studies, the hysteresis is more appropriate. The 4BP static creep and dynamic tests are sufficient methods for determining the rheological parameters for materials designed for flexible pavements. In the 4BP dynamic test, we determined relationships between damping and viscosity coefficients, showing material variability depending on the test temperature.


Sign in / Sign up

Export Citation Format

Share Document