Modeling of Pedestrian Counter Flow in Corridors with Different Barriers

2013 ◽  
Vol 444-445 ◽  
pp. 1685-1689
Author(s):  
Xiao Dong Liu ◽  
Wei Guo Song ◽  
Wei Lv ◽  
Fei Zhou Huo

An improved cellular automata model is proposed to study the pedestrian counter flow in corridors with different placements of barriers. The model considers the sensing region, collision avoidance, following, position exchange, and other common pedestrian behaviors. The sensing region here considers not only the number of pedestrians, but also their distances, velocities, both of which affect pedestrians’ transition probabilities. For example, when confronting with opposite pedestrians in high speed, the pedestrian may prefer to slow down or change the original direction. In the model, the pedestrians can change their velocities according to different situations. Simulations are conducted with the proposed model and the effect of different placements of barriers in corridors is studied in detail. The flow rates in different situations are compared, and it is found that certain placements of barriers can obviously improve the corridor’s pedestrian capacity, which may contribute to corridor design in the future.

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Xiao-Xia Jian ◽  
Xiaoning Zhang

We propose a potential field cellular automata model with a pushing force field to simulate the pedestrian evacuation in a domain with a ramp. We construct a cost potential depending on the ramp angle and introduce a function to evaluate the pushing force, which is related to the cost and the desired direction of pedestrian. With increase of crowd density, there is no empty space for pedestrian moving forward; pedestrian will purposefully push another pedestrian on her or his desired location to arrive the destination quickly. We analyse the relationship between the slope of ramp and the pushing force and investigate the changing of injured situations with the changing of the slope of ramp. When the number of pedestrians and the ramp angle arrive at certain critical points, the Domino effect will be simulated by this proposed model.


2015 ◽  
Vol 651-653 ◽  
pp. 581-586 ◽  
Author(s):  
Mateusz Sitko ◽  
Łukasz Madej ◽  
Maciej Pietrzyk

Development and validation of the micro scale cellular automata (CA) model of dynamic recrystallization (DRX) were the main goals of the present paper. Major assumptions of the developed CA DRX model, which is based on the Digital Material Representation (DMR) concept, are described. Parameters like neighborhood type, state and internal variables of the proposed model and their influence on final results are presented and discussed. Particular attention was put on description of the developed transition rules used to replicate mechanisms leading to dynamic recrystallization. Finally, obtained results in the form of flow stress curves are compared with the experimental predictions.


2021 ◽  
pp. 1-17
Author(s):  
Ujjal Chattaraj

In this work a microscopic model on pedestrian flow has been proposed. Observed data is used to calibrate and validate the proposed model. The model developed here uses a fuzzy inference system to represent the rules and a force–field structure to represent the repulsive and attractive impacts of objects and goals, respectively in the flow space. The flow space and time are discretized and viewed as discrete quantities. This microscopic model of pedestrian behavior, which essentially models how each pedestrian behaves over time in the flow space, is embedded in a simulation model which is used to simulate situations similar to the ones for which experiments have been done. The results show that the model performs reasonably well.


2020 ◽  
Vol 34 (21) ◽  
pp. 2050213
Author(s):  
Wen-Jun Li ◽  
Xiao Feng

Based on discrete-event dynamic system theory, train operation events in high-speed railway transportation systems are regarded as the basic elements of these dynamic systems. For non-periodic timetable railways in China, based on a max-plus algebra method, a delay propagation cellular automata model is proposed to evaluate the robustness of high-speed train operation plans. The cellular automata evolution rules that can reproduce the delay propagation state of trains mainly consider train safety headway constraints, passenger transfer constraints, and electric multiple unit (EMU) connection constraints. A simulation analysis of actual cases is performed. The simulation results show that the model can be used to evaluate the robustness of the train operation plan. The numerical results show that in the preparation of train operation plans, the proposed model can predict which trains have significant influences on delays in advance and improve the possibility of reducing the occurrence of delays to maintain high-quality service.


2005 ◽  
Vol 16 (11) ◽  
pp. 1793-1801 ◽  
Author(s):  
BIN NING ◽  
KE-PING LI ◽  
ZI-YOU GAO

In this paper, we propose a new cellular automata model to simulate the railway traffic. The proposed model is based on deterministic NaSch traffic model. The signaling system adopted in this work is the three-aspect fixed-block signaling system. In order to obtain insight into the characteristic behavior of the railway signaling system, we analyze the space-time diagram of traffic flow and the trajectory of train movement etc. The simulation results demonstrate that the proposed CA model can be successfully used for the simulations of railway signaling system. Some complex phenomena observed in railway system can be reproduced.


2013 ◽  
Vol 709 ◽  
pp. 871-874 ◽  
Author(s):  
Jia Tai Gang ◽  
Peng Yan Shi ◽  
San Shan Gang

A cellular automata model with inhomogeneity and mobility was presented. The inhomogeneity in individuals’ behaviors was considered by assigning the distance on their neighbors, varying levels of infectivity and susceptibility. The individual mobility was reflected by random walk cellular automata. The proposed model can serve as a basis to simulate influenza A (H1N1) based on real data. We studied the effect of two population movement parameters on the epidemic propagation: the percentage and the max-distance of population movement. The results show that the epidemic spreading is more sensitive to the former. The infected individuals are positive growth while the percentage of population movement increases. And the number of infected individual eventually stabilizes in the case of plotting the relation of the max-distance against the infected.


2018 ◽  
Vol 1 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Yun Zou ◽  
Xiaobo Qu

Purpose Freeway work zones have been traffic bottlenecks that lead to a series of problems, including long travel time, high-speed variation, driver’s dissatisfaction and traffic congestion. This research aims to develop a collaborative component of connected and automated vehicles (CAVs) to alleviate negative effects caused by work zones. Design/methodology/approach The proposed cooperative component is incorporated in a cellular automata model to examine how and to what scale CAVs can help in improving traffic operations. Findings Simulation results show that, with the proposed component and penetration of CAVs, the average performances (travel time, safety and emission) can all be improved and the stochasticity of performances will be minimized too. Originality/value To the best of the authors’ knowledge, this is the first research that develops a cooperative mechanism of CAVs to improve work zone performance.


2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Lim Eng Aik ◽  
Tan Wee Choon

A modified dynamic cellular automata model is proposed to simulate the evacuation of occupants from a room with obstacles. The model takes into account some factors that play an important role in an evacuation process, such as human emotions and crowd density around the exits. It also incorporates people’s ability to select a less congested exit route, a factor that is rarely investigated. The simulation and experimental results show that modifications to the exits provide reasonable improvement to evacuation time, after taking into account the fact that people will tend to select exit routes based on the distance to the exits and the crowd density around the exits. In addition, the model is applied to simulations of classroom and restaurant evacuation. Results obtained with the proposed model are compared with those of several existing models. The outcome of the comparison demonstrates that it performs better than existing models.


Author(s):  
Nisha V M ◽  
L Jeganathan

Computer aided diagnosis (CAD) is an advancing technology in medical imaging. CAD acts as an additional computing power for doctors to interpret the medical images which leads to a more accurate diagnosis of the disease.CAD system increases the chances of detection of brain lesions by assisting the physicians in decreasing the observational oversight in the early stage of diseases.This paper focuses on the development of a cellular automata based model to find the anomaly prone areas in human brains.Because of the bilateral symmetric nature of human brain, a symmetry based cellular automata model is proposed.An algorithm is designed based on the proposed model to detect the anomaly prone areas in brain images. The proposed model can be a standalone model or it can be incorporated to a sophisticated computer aided diagnosis system. By incorporating asymmetry information into a computer aided diagnosis system, enhances its performance in identifying the anomalies exists in bilaterally symmetrical brain images.


Sign in / Sign up

Export Citation Format

Share Document