The Static Analysis of Pilot Type Zero Steady-State Error of Water Hydraulic Pressure Reducing Valve

2013 ◽  
Vol 444-445 ◽  
pp. 468-475 ◽  
Author(s):  
Huan Yang ◽  
Jing Luo ◽  
Sen Hui ◽  
Shi Yin Qiu ◽  
Rong Ping Xue ◽  
...  

The static-state error is existed in the pressure valve, coupled with the characteristics of high vaporization pressure, low viscosity, and small compressibility, so that the fluid dynamics and friction force of hydraulic pressure valve are increased. The pressure valve will easily come up with produce cavitation erosion and wire drawing. Those appearances would seriously affect the performance of the pressure valve and its life cycle. A new type of static water pressure reducing valve is designed in this paper. It has a special structure which can complete the internal dynamic pressure feedback of the valve. The static mathematical model of value is established. And the static characteristic is analysed by using MATLAB simulation, which provides the static pressure characteristic curve, static pressure flow curve. It comes up with a result that this valve has good static pressure, and high precision pressure regulator.

1967 ◽  
Vol 89 (2) ◽  
pp. 301-308 ◽  
Author(s):  
C. Y. Ma

This paper presents the static and dynamic characteristics of single-stage pressure-reducing valves and establishes design criteria. The dynamic analysis was accomplished using frequency-response techniques. A simplified loop gain function is developed for the valve and consists of a loop gain constant and two dominant time constants. The static characteristic curve and dynamic analysis were verified experimentally. A relationship between static and dynamic performance is also given.


2020 ◽  
Vol 2;23 (4;2) ◽  
pp. 219-227
Author(s):  
César Fernández-de-las-Peñas

Background: A method for assessing dynamic muscle hyperalgesia (dynamic pressure algometry) has been developed and applied in tension-type and migraine headaches. Objectives: To investigate differences in dynamic pressure pain assessment over the trigeminal area between men with cluster headache (CH) and headache-free controls, and the association between dynamic and static pressure pain sensitivity. Study Design: A case-control study. Setting: Tertiary urban hospital. Methods: Forty men with episodic CH and 40 matched controls participated. Dynamic pressure pain sensitivity was assessed with a dynamic pressure algometry set consisting of 8 rollers with different fixed levels (500, 700, 850, 1,350, 1,550, 2,200, 3,850, and 5,300 g). Each roller was moved at a speed of 0.5 cm/sec over a diagonal line covering the temporalis muscle from an anterior to posterior direction. The dynamic pressure threshold (DPT; load level of the first painful roller) and the pain intensity perceived at the DPT level (roller-evoked pain) were assessed. Static pressure pain thresholds (PPT) were also assessed with a digital pressure algometer applied statically over the mid-muscle belly of the temporalis. Patients were assessed in a remission phase, at least 3 months from the last cluster attack, and without preventive medication. Results: Side-to-side consistency between DPTs (r = 0.781, P < 0.001), roller-evoked pain on DPT (r = 0.586; P < 0.001), and PPTs (r = 0.874; P < 0.001) were found in men with CH. DPT was moderately, bilaterally, and side-to-side associated with PPTs (0.663 > r > 0.793, all P < 0.001). Men with CH had bilateral lower DPT and PPT and reported higher levels of rollerevoked pain (all P < 0.001) than headache-free controls. Limitations: Only men with episodic CH were included. Conclusions: This study supports that a dynamic pressure algometry is as valid as a static pressure algometry for assessing pressure pain sensitivity in patients with CH. Assessing both dynamic and static pain sensitivity may provide new opportunities for differentiated diagnostics. Key words: Cluster headache, dynamic pressure pain, pressure pain threshold


Author(s):  
Nalin Verma ◽  
Kenneth A. Cunefare ◽  
Ellen Skow ◽  
Alper Erturk

A hydraulic pressure energy harvester (HPEH) device, which utilizes a housing to isolate a piezoelectric stack from the hydraulic fluid via a mechanical interface, generates power by converting the dynamic pressure within the system into electricity. Prior work developed an HPEH device capable of generating 2187 microWatts from an 85 kPa pressure ripple amplitude using a 1387 mm3 stack. A new generation of HPEH produced 157 microWatts at the test conditions of 18 MPa static pressure and 394 kPa root-mean-square pressure amplitude using a 50 mm3 stack, thus increasing the power produced per volume of piezoelectric stack principally due to the higher dynamic pressure input. The stack and housing design implemented on this new prototype device yield a compact, high-pressure hydraulic pressure energy harvester designed to withstand 35 MPa. The device, which is less than a 2.54 cm in length as compared to a 5.3 cm length of a previous HPEH, was statically tested up to 21.9 MPa and dynamically tested up to 19 MPa with 400 kPa root-mean-square dynamic pressure amplitude. An inductor was included in the load circuit in parallel with the stack and the load resistance to increase the power output of the device. A previously developed electromechanical power output model for this device that predicts the power output given the dynamic pressure ripple amplitude is compared to the power results. The power extracted from this device would be sufficient to meet the proposed applications of the device, which is to power sensor nodes in hydraulic systems.


2015 ◽  
Vol 52 (9) ◽  
pp. 1331-1344 ◽  
Author(s):  
W.M. Yan ◽  
Guanghui Zhang

Experiments were undertaken to study the soil-water characteristics of compacted sandy soil (SS) and cemented soil (CS) in field and laboratory conditions. The influence of vegetation and material density on the development of negative pore-water pressure (PWP) and degree of saturation (Sr) in the studied materials was investigated. The field planting experiments demonstrated a promising survival rate of Schefflera heptaphylla in both types of material, while the (SS) promoted better growth of the seedlings than the cemented one. In the field study, PWP and Sr of the compacted SS responded noticeably and promptly to natural drying–wetting cycles. However, the responses in the CS were relatively mild. When subjected to the same drying–wetting cycles, PWP responded more slowly and to a smaller magnitude compared with that of the uncemented counterpart. In addition, Sr changed little in CS. An increase in the density of the SS promoted rapid development of negative PWP, while an opposite trend was observed for CS. Attempts have been made to explain the observations from the perspectives of material permeability and change in water content during a drying period in both soil types. Furthermore, in SS, the development of PWP (with a measurement limit of −90 kPa) was minimally affected by the presence of vegetation, while vegetation noticeably helped the development of negative PWP in CS. Bounds of the soil-water characteristic curve (SWCCs) of the studied materials were presented based on estimates from the drying and wetting scanning curves derived from the field monitoring. A corresponding laboratory study was carried out in an environmental chamber with controllable temperature and humidity. Monitoring results from the laboratory agreed qualitatively with those obtained from the field.


Micromachines ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 300 ◽  
Author(s):  
Ziyu Chen ◽  
Sunggi Noh ◽  
Rhonda D. Prisby ◽  
Jeong-Bong Lee

Modulations of fluid flow inside the bone intramedullary cavity has been found to stimulate bone cellular activities and augment bone growth. However, study on the efficacy of the fluid modulation has been limited to external syringe pumps connected to the bone intramedullary cavity through the skin tubing. We report an implantable magnetic microfluidic pump which is suitable for in vivo studies in rodents. A compact microfluidic pump (22 mm diameter, 5 mm in thickness) with NdFeB magnets was fabricated in polydimethylsiloxane (PDMS) using a set of stainless-steel molds. An external actuator with a larger magnet was used to wirelessly actuate the magnetic microfluidic pump. The characterization of the static pressure of the microfluidic pump as a function of size of magnets was assessed. The dynamic pressure of the pump was also characterized to estimate the output of the pump. The magnetic microfluidic pump was implanted into the back of a Fischer-344 rat and connected to the intramedullary cavity of the femur using a tube. On-demand wireless magnetic operation using an actuator outside of the body was found to induce pressure modulation of up to 38 mmHg inside the femoral intramedullary cavity of the rat.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Yuanzhu Zhang ◽  
Siming Zhang ◽  
Gang Wei ◽  
Xinjiang Wei ◽  
Liqiao Jin ◽  
...  

In order to analyze the process of hydraulic water infiltrating cracked concrete of underwater tunnels, the equation of water transport in unsaturated cracked concrete under pressure was proposed according to the double-porosity medium model. Penetration tests on prefabricated cracked concrete blocks were conducted, and then the influence of hydraulic pressure, initial saturation, and crack width on water transport was studied. The results show that the larger the water pressure, the lower the initial saturation, and the wider the crack width, then the greater the penetration depth, which can be reasonably explained according to water motion theoretical models in this study. Moreover, the TOUGH2 software was used to simulate the change and distribution of saturation, driving potential, and water velocity of unsaturated cracked concrete, which further proved the experimental results and theoretical analysis. It reflects that both pressure potential and matric potential are the driving force of water transport in underwater cracked concrete, and the driving force will be converted with the change of concrete saturation. In addition, crack width is positively correlated with concrete permeability.


Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 981
Author(s):  
Woong Gi Lee ◽  
Younghyun Cho ◽  
Sang Wook Kang

To prepare a porous cellulose acetate (CA) for application as a battery separator, Cd(NO3)2·4H2O was utilized with water-pressure as an external physical force. When the CA was complexed with Cd(NO3)2·4H2O and exposed to external water-pressure, the water-flux through the CA was observed, indicating the generation of pores in the polymer. Furthermore, as the hydraulic pressure increased, the water-flux increased proportionally, indicating the possibility of control for the porosity and pore size. Surprisingly, the value above 250 LMH (L/m2h) observed at the ratio of 1:0.35 (mole ratio of CA: Cd(NO3)2·4H2O) was of higher flux than those of CA/other metal nitrate salts (Ni(NO3)2 and Mg(NO3)2) complexes. The higher value indicated that the larger and abundant pores were generated in the cellulose acetate at the same water-pressure. Thus, it could be thought that the Cd(NO3)2·4H2O salt played a role as a stronger plasticizer than the other metal nitrate salts such as Ni(NO3)2 and Mg(NO3)2. These results were attributable to the fact that the atomic radius and ionic radius of the Cd were largest among the three elements, resulting in the relatively larger Cd of the Cd(NO3)2 that could easily be dissociated into cations and NO3− ions. As a result, the free NO3− ions could be readily hydrated with water molecules, causing the plasticization effect on the chains of cellulose acetate. The coordinative interactions between the CA and Cd(NO3)2·4H2O were investigated by IR spectroscopy. The change of ionic species in Cd(NO3)2·4H2O was analyzed by Raman spectroscopy.


2014 ◽  
Vol 978 ◽  
pp. 94-100
Author(s):  
Yi Ping Li

Analyzed and studied the hydro-pneumatic buffer structure of railway vehicle, designed a new type of hydro-pneumatic buffer and established the detailed dynamics model. Calculated the static characteristic curve of hydro-pneumatic buffer with different compression rate and dynamic characteristic curve with different impact speed through the numerical simulation method. The simulation results shows that the biggest impedance force is 1836.3KN and buffer capacity reach 221.89KJ when impact velocity of the new hydro-pneumatic buffer is 5m/s.New hydro-pneumatic buffer can improve the speed of manipulating vehicle, reduce the longitudinal impact and vibration in the train and adapt to the needs of the trains.


1956 ◽  
Vol 185 (2) ◽  
pp. 351-354 ◽  
Author(s):  
James E. Randall ◽  
Ralph W. Stacy

Instantaneous pressure and flow in the femoral artery of the dog were recorded under steady and pulsatile pressure conditions. Static pressure-flow diagrams and dynamic pressure-flow diagrams over the pulse pressure range at different points in the cardiac cycle were constructed. A comparison was made of the flow corresponding to a) normal pulsatile conditions, and b) static pressures equal to the mean of the pulsatile pressures. The static pressure-flow diagrams were consistent with those described by other workers, and were essentially linear in the ranges studied. Changing from steady to pulsating pressures altered the flow from 40.4 ml/min. to 40.9 ml/min. This difference was less than the measurement accuracy of the flow, although statistical analysis indicated significance to 1%. The dynamic pressure-flow diagram appeared as a ‘loop,’ the shape of which indicated that in 12 of 13 animals, the system was mass controlled and the heart rate was higher than the resonant frequency. In the one exception, the phase angle was negligible and the system was apparently in resonance.


Sign in / Sign up

Export Citation Format

Share Document