Microstructure and Tensile Properties of Al0.5CoCrCuFeNi High-Entropy Alloy

2013 ◽  
Vol 456 ◽  
pp. 494-497 ◽  
Author(s):  
Hong Fei Sheng ◽  
Liang Ming Peng

The Al0.5CoCrFeCuNi alloy with equiaxed structure was prepared. The as-cast alloy consists of face-centered cubic (FCC) solid-solution with equiaxed matrix and network grain boundaries. Annealing/quenching treatment at 600°C promotes the formations of new BCC structured phase and Cu-rich nanoprecipitations dispersed in grain boundaries, which are beneficial for enhancement in Vickers Hardness and tensile strength. The ultimate tensile stress up to 1002 MPa was achieved after the alloy was annealed following quenching treatment.

2009 ◽  
Vol 23 (06n07) ◽  
pp. 1254-1259 ◽  
Author(s):  
FANGJUN WANG ◽  
YONG ZHANG ◽  
GUOLIANG CHEN ◽  
HYWEL A. DAVIES

A high entropy alloy of composition CoCrCuFeNiAl 0.5 is mainly composed of a face centered cubic (FCC) solid solution phase. The tensile and compressive properties of the alloy were investigated; the alloy exhibited a tensile strength of 707 MPa, together with a large plastic strain limit of 19%.


Metals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 345 ◽  
Author(s):  
Lianzan Yang ◽  
Yongyan Li ◽  
Zhifeng Wang ◽  
Weimin Zhao ◽  
Chunling Qin

High-entropy alloys (HEAs) present excellent mechanical properties. However, the exploitation of chemical properties of HEAs is far less than that of mechanical properties, which is mainly limited by the low specific surface area of HEAs synthesized by traditional methods. Thus, it is vital to develop new routes to fabricate HEAs with novel three-dimensional structures and a high specific surface area. Herein, we develop a facile approach to fabricate nanoporous noble metal quasi-HEA microspheres by melt-spinning and dealloying. The as-obtained nanoporous Cu30Au23Pt22Pd25 quasi-HEA microspheres present a hierarchical porous structure with a high specific surface area of 69.5 m2/g and a multiphase approximatively componential solid solution characteristic with a broad single-group face-centered cubic XRD pattern, which is different from the traditional single-phase or two-phase solid solution HEAs. To differentiate, these are named quasi-HEAs. The synthetic strategy proposed in this paper opens the door for the synthesis of porous quasi-HEAs related materials, and is expected to promote further applications of quasi-HEAs in various chemical fields.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ashutosh Sharma ◽  
Byungmin Ahn

AbstractIn this work, we studied the brazing characteristics of Al2O3 and 3D printed Ti–6Al–4V alloys using a novel equiatomic AlZnCuFeSi high entropy alloy filler (HEAF). The HEAF was prepared by mechanical alloying of the constituent powder and spark plasma sintering (SPS) approach. The filler microstructure, wettability and melting point were investigated. The mechanical and joint strength properties were also evaluated. The results showed that the developed AlZnCuFeSi HEAF consists of a dual phase (Cu–Zn, face-centered cubic (FCC)) and Al–Fe–Si rich (base centered cubic, BCC) phases. The phase structure of the (Cu–Al + Ti–Fe–Si)/solid solution promises a robust joint between Al2O3 and Ti–6Al–4V. In addition, the joint interfacial reaction was found to be modulated by the brazing temperature and time because of the altered activity of Ti and Zn. The optimum shear strength reached 84 MPa when the joint was brazed at 1050 °C for 60 s. The results can be promising for the integration of completely different materials using the entropy driven fillers developed in this study.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 742
Author(s):  
Motomichi Koyama ◽  
Takeaki Gondo ◽  
Kaneaki Tsuzaki

The effects of ausforming in an Fe30Mn10Cr10Co high-entropy alloy on the microstructure, hardness, and plastic anisotropy were investigated. The alloy showed a dual-phase microstructure consisting of face-centered cubic (FCC) austenite and hexagonal close-packed (HCP) martensite in the as-solution-treated condition, and the finish temperature for the reverse transformation was below 200 °C. Therefore, low-temperature ausforming at 200 °C was achieved, which resulted in microstructure refinement and significantly increased the hardness. Furthermore, plasticity anisotropy, a common problem in HCP structures, was suppressed by the ausforming treatment. This, in turn, reduced the scatter of the hardness.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7199
Author(s):  
Hyunbin Nam ◽  
Jeongwon Kim ◽  
Namkyu Kim ◽  
Sangwoo Song ◽  
Youngsang Na ◽  
...  

In this study, the carburization characteristics of cast and cold-rolled CoCrFeMnNi high-entropy alloys (HEAs) with various grain sizes were investigated. All specimens were prepared by vacuum carburization at 940 °C for 8 h. The carburized/diffused layer was mainly composed of face-centered cubic structures and Cr7C3 carbide precipitates. The carburized/diffused layer of the cold-rolled specimen with a fine grain size (~1 μm) was thicker (~400 μm) than that of the carburized cast specimen (~200 μm) with a coarse grain size (~1.1 mm). In all specimens, the carbides were formed primarily through grain boundaries, and their distribution varied with the grain sizes of the specimens. However, the carbide precipitates of the cast specimen were formed primarily at the grain boundaries and were unequally distributed in the specific grains. Owing to the non-uniform formation of carbides in the carburized cast specimen, the areas in the diffused layer exhibited various carbide densities and hardness distributions. Therefore, to improve the carburization efficiency of equiatomic CoCrFeMnNi HEAs, it is necessary to refine the grain sizes.


Metals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1078
Author(s):  
Jiro Kitagawa ◽  
Shusuke Hamamoto ◽  
Naoki Ishizu

High-entropy alloys (HEAs) are a new class of materials which are being energetically studied around the world. HEAs are characterized by a multicomponent alloy in which five or more elements randomly occupy a crystallographic site. The conventional HEA concept has developed into simple crystal structures such as face-centered-cubic (fcc), body-centered-cubic (bcc) and hexagonal-closed packing (hcp) structures. The highly atomic-disordered state produces many superior mechanical or thermal properties. Superconductivity has been one of the topics of focus in the field of HEAs since the discovery of the bcc HEA superconductor in 2014. A characteristic of superconductivity is robustness against atomic disorder or extremely high pressure. The materials research on HEA superconductors has just begun, and there are open possibilities for unexpectedly finding new phenomena. The present review updates the research status of HEA superconductors. We survey bcc and hcp HEA superconductors and discuss the simple material design. The concept of HEA is extended to materials possessing multiple crystallographic sites; thus, we also introduce multisite HEA superconductors with the CsCl-type, α-Mn-type, A15, NaCl-type, σ-phase and layered structures and discuss the materials research on multisite HEA superconductors. Finally, we present the new perspectives of eutectic HEA superconductors and gum metal HEA superconductors.


2018 ◽  
Vol 63 (6) ◽  
pp. 362-368 ◽  
Author(s):  
Junyang He ◽  
Qi Wang ◽  
Husheng Zhang ◽  
Lanhong Dai ◽  
Toshiji Mukai ◽  
...  

Entropy ◽  
2019 ◽  
Vol 21 (3) ◽  
pp. 288
Author(s):  
Yiming Tan ◽  
Jinshan Li ◽  
Jun Wang ◽  
Hongchao Kou

CoCrFeNiPdMnx (x = 0, 0.2, 0.4, 0.6, 0.8) high entropy alloys (HEAs) were prepared and characterized. With an increase in Mn addition, the microstructures changed from dendrites (CoCrFeNiPd with a single face-centered-cubic (FCC) phase) to divorced eutectics (CoCrFeNiPdMn0.2 and CoCrFeNiPdMn0.4), to hypoeutectic microstructures (CoCrFeNiPdMn0.6), and finally to seaweed eutectic dendrites (CoCrFeNiPdMn0.8). The addition of Mn might change the interface energy anisotropy of both the FCC/liquid and MnPd-rich intermetallic compound/liquid interfaces, thus forming the seaweed eutectic dendrites. The hardness of the FCC phase was found to be highly related to the solute strengthening effect, the formation of nanotwins and the transition from CoCrFeNiPd-rich to CoCrFeNi-rich FCC phase. Hierarchical nanotwins were found in the MnPd-rich intermetallic compound and a decrease in either the spacing of primary twins or secondary twins led to an increase in hardness. The designing rules of EHEAs were discussed and the pseudo binary method was revised accordingly.


2017 ◽  
Vol 129 ◽  
pp. 30-34 ◽  
Author(s):  
Jithin Joseph ◽  
Nicole Stanford ◽  
Peter Hodgson ◽  
Daniel Mark Fabijanic

Sign in / Sign up

Export Citation Format

Share Document