Mechanical Performance Tests of Bamboo Beetles Otidognathus davidis fairs' Abdominal Shells

2013 ◽  
Vol 461 ◽  
pp. 241-246 ◽  
Author(s):  
Yi Song ◽  
Zhou Yi Wang ◽  
Ai Hong Ji ◽  
Zhen Dong Dai

The biomaterials with excellent properties such as high strength-weights ratio and so on will inspire inspirations about bionic composite materials to satisfy the scalding hypercriticisms for aerial materials. The investigations of biomaterial mechanical performances are of great advantages in bionic designs and bionic manufactures. The mechanical performances of Bamboo BeetlesOtidognathus Davidis Fairs abdominal shells were tested with a nanoindenter in this paper. The experiments results demonstrated that the harnesses and modulus are different at different test areas. The mechanical performances resemble much at the same latitude but decrease along longitude from the forehead to the rearward, indicating that the mechanical performances of the abdominal shells distribute topologically. Whats more, the topological distributions of mechanical performances illustrate a kind of unlearned structure optimizations of insects which will provide edifications to designs of light and strong materials.

2018 ◽  
Vol 4 (1) ◽  
pp. 9 ◽  
Author(s):  
Sadık Alper Yıldızel ◽  
Serdar Çarbaş

Gypsum and gypsum based composite are widely preferred in construction industry for various purposes. Mechanical performances of gypsum composite have been enhanced by researchers in order to increase its area of usage. In this research, gypsum composites containing expanded glass were reinforced by glass fibers (GF) and mono polypropylene fibers (MPF). GF and MPF were used up to 1.5 %. The flexural strength, compressive strength, and shrinkage behavior of the composites were examined within the scope of this study. 50 x 50 x 50 mm and 40 x 40 x 160 sized specimens were prepared for the mechanical performance tests. It was obtained that flexural and shrinkage behavior of the composite were enhanced with the addition of MPF compared to GF added mixes; however, compressive strength values were not as high as GF reinforced composites.


Author(s):  
I.R. Antypes ◽  
◽  
V.V. Zaitsev ◽  

Currently, the use of composite materials is increasingly used in various areas of the national economy, including the aviation industry. The materials of this article are devoted to the study of the use of composite materials for the manufacture of aircraft landing gear in comparison with the traditionally used brand of steel. As a result of the work carried out, it was found that the slope made of carbon fiber showed a critical stress twice as high as its design made of 30xgsn2a steel. In addition, carbon plastics are superior to high-strength steel in terms of specific strength, stiffness, and tensile strength.


2020 ◽  
Vol 4 (1) ◽  
pp. 41-48
Author(s):  
Teodoro Astorga Amatosa ◽  
Michael E. Loretero

Bamboo is a lightweight and high-strength raw materials that encouraged researchers to investigate and explore, especially in the field of biocomposite and declared as one of the green-technology on the environment as fully accountable as eco-products. This research was to assess the technical feasibility of making single-layer experimental Medium-Density Particleboard panels from the bamboo waste of a three-year-old (Dendrocalamus asper). Waste materials were performed to produce composite materials using epoxy resin (C21H25C105) from a natural treatment by soaking with an average of pH 7.6 level of sea-water. Three different types of MDP produced, i.e., bamboo waste strip MDP (SMDP), bamboo waste chips MDP (CMDP) and bamboo waste mixed strip-chips MDP (MMDP) by following the same process. The experimental panels tested for their physical-mechanical properties according to the procedures defined by ASTM D1037-12. Conclusively, even the present study shows properties of MDP with higher and comparable to other composite materials; further research must be given better attention as potential substitute to be used as hardwood materials, especially in the production, design, and construction usage.


2021 ◽  
Vol 13 (6) ◽  
pp. 3482
Author(s):  
Seoungho Cho ◽  
Myungkwan Lim ◽  
Changhee Lee

High-strength reinforcing bars have high yield strengths. It is possible to reduce the number of reinforcing bars placed in a building. Accordingly, as the amount of reinforcement decreases, the spacing of reinforcing bars increases, workability improves, and the construction period shortens. To evaluate the structural performance of high-strength reinforcing bars and the joint performance of high-strength threaded reinforcing bars, flexural performance tests were performed in this study on 12 beam members with the compressive strength of concrete, the yield strength of the tensile reinforcing bars, and the tensile reinforcing bar ratio as variables. The yield strengths of the tensile reinforcement and joint methods were used as variables, and joint performance tests were performed for six beam members. Based on this study, the foundation for using high-strength reinforcing bars with a design standard yield strength equal to 600 MPa was established. Accordingly, mechanical joints of high-strength threaded reinforcing bars (600 and 670 MPa) can be used. All six specimens were destroyed under more than the expected nominal strength. Lap splice caused brittle fractures because it was not reinforced in stirrup. Increases of 21% to 47% in the loads of specimens using a coupler and a lock nut were observed. Shape yield represents destruction—a section must ensure sufficient ductility after yielding. Therefore, a coupler and lock nut are effective.


2021 ◽  
pp. 136943322110073
Author(s):  
Xiaoming Zhang ◽  
Danni Ren ◽  
Xin Liu ◽  
Sujun Guan ◽  
Xindi Yu ◽  
...  

To improve the mechanical performances of joints in prefabricated construction, a type of connection structure with long-fiber and metal laminated bolts (referred to as a fiber-metal connector) is proposed and investigated by simulation and theoretical methods. The results include the following: (1) The fiber layer in bolts can form a second stiffness during rotation. This mechanical characteristic improves the bearing capacities and energy dissipation ability of the connector relative to the conventional metal connector, which are expected to effectively limit the elastoplastic rotational displacement of a structure. (2) For the reason, the fiber layer can bear load in the plastic phase due to its high-strength characteristic in the length direction. (3) A bilinear model for the bearing curve of the fiber-metal connector is proposed, and equations for optimization of fiber layer thickness are obtained with a target on bearing capacity and energy dissipation ability which are approximately higher 30% and 13% than that of the conventional metal connector, respectively. This research is expected to provide a theoretical basis for the application of this fiber-metal connector in engineering and improve the safety of prefabricated structures.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1021
Author(s):  
Yunzhao Li ◽  
Huaping Tang ◽  
Ruilin Lai

Resistance spot welded 1.2 mm (t)-thick 1400 MPa martensitic steel (MS1400) samples are fabricated and their microstructure, mechanical properties are investigated thoroughly. The mechanical performance and failure modes exhibit a strong dependence on weld-nugget size. The pull-out failure mode for MS1400 steel resistance spot welds does not follow the conventional weld-nugget size recommendation criteria of 4t0.5. Significant softening was observed due to dual phase microstructure of ferrite and martensite in the inter-critical heat affected zone (HAZ) and tempered martensite (TM) structure in sub-critical HAZ. However, the upper-critical HAZ exhibits obvious higher hardness than the nugget zone (NZ). In addition, the mechanical properties show that the cross-tension strength (CTS) is about one quarter of the tension-shear strength (TSS) of MS1400 weld joints, whilst the absorbed energy of cross-tension and tension-shear are almost identical.


2020 ◽  
Author(s):  
A. G. Burlachenko ◽  
Yu. A. Mirovoy ◽  
E. S. Dedova ◽  
S. P. Buyakova

2021 ◽  
pp. 089270572199789
Author(s):  
S Gohar ◽  
G Hussain ◽  
A Ali ◽  
H Ahmad

Honey Comb Sandwich Structures (HCSS) have numerous applications in aerospace, automobile, and satellite industry because of their properties like high strength to weight ratio, stiffness and impact strength. Fused Deposition Modeling (FDM) is a process which, through its flexibility, simple processing, short manufacturing time, competitive prices and freedom of design, has an ability to enhance the functionality of HCSS. This paper investigates the mechanical behavior (i.e. flexural, edgewise compression and Interfacial bond strength) of FDM-built HCSS. The influence of face/core material was examined by manufacturing four types of specimens namely ABS core with Composite (PLA + 15% carbon fibers) face sheets, ABS core with PLA face sheets, TPU core with composite face sheets and TPU core with PLA face sheets. To measure the effect of face sheets geometry, raster layup was varied at 0°/90° and 45°/−45°. The mechanical characterization revealed that an optimum combination of materials is ABS core with composite face sheets having raster layup of 0°/90°. This study indicates that HCSS with complex lamination schemes and adequate mechanical properties could be manufactured using FDM which may widen the applications of FDM on an industrial scale.


Sign in / Sign up

Export Citation Format

Share Document