scholarly journals Mechanical performance comparison of glass and mono fibers added gypsum composites

2018 ◽  
Vol 4 (1) ◽  
pp. 9 ◽  
Author(s):  
Sadık Alper Yıldızel ◽  
Serdar Çarbaş

Gypsum and gypsum based composite are widely preferred in construction industry for various purposes. Mechanical performances of gypsum composite have been enhanced by researchers in order to increase its area of usage. In this research, gypsum composites containing expanded glass were reinforced by glass fibers (GF) and mono polypropylene fibers (MPF). GF and MPF were used up to 1.5 %. The flexural strength, compressive strength, and shrinkage behavior of the composites were examined within the scope of this study. 50 x 50 x 50 mm and 40 x 40 x 160 sized specimens were prepared for the mechanical performance tests. It was obtained that flexural and shrinkage behavior of the composite were enhanced with the addition of MPF compared to GF added mixes; however, compressive strength values were not as high as GF reinforced composites.

2019 ◽  
Vol 5 (5) ◽  
pp. 1007-1019 ◽  
Author(s):  
Babar Ali ◽  
Liaqat Ali Qureshi ◽  
Ali Raza ◽  
Muhammad Asad Nawaz ◽  
Safi Ur Rehman ◽  
...  

Despite plain cement concrete presenting inferior performance in tension and adverse environmental impacts, it is the most widely used construction material in the world. Consumption of fibers and recycled coarse aggregates (RCA) can add ductility and sustainability to concrete. In this research, two mix series (100%NCA, and 100%RCA) were prepared using four different dosages of GF (0%GF, 0.25%GF, 0.5%GF, and 0.75%GF by volume fraction).  Mechanical properties namely compressive strength, splitting tensile strength, and flexural strength of each concrete mixture was evaluated at the age of 28 days. The results of testing indicated that the addition of GF was very useful in enhancing the split tensile and flexural strength of both RCA and NCA concrete. Compressive strength was not highly sensitive to the addition of GF. The loss in strength that occurred due to the incorporation of RCA was reduced to a large extent upon the inclusion of GF. GF caused significant improvements in the split tensile and flexural strength of RCA concrete. Optimum dosage of GF was determined to be 0.25% for NCA, and 0.5% for RCA concrete respectively, based on the results of combined mechanical performance (MP).


Author(s):  
Sabria Malika Mansour

The present work investigates the use of an alumino-silicate material, the pyrophyllite as cement substitution, synthetic polypropylene fibers and binder to create an unusual ultra-performance fiber concrete; new composite, which offers a wide field of possible use in construction industry. Effect of pyrophyllite on the physical-mechanical properties is analyzed. One reference fiber concrete without pyrophyllite and three fiber concretes containing 10%, 20%, 30% of pyrophyllite were elaborated. Results show that the pyrophyllite affects the characteristics of the concrete. Indeed, in the hardened state, the density of fiber concrete decreased with pyrophyllite rate increasing. Moreover, the use of pyrophyllite slows down the hardening process of concrete, consequently producing at early ages, compressive, flexural and tensile strengths and elastic modulus of concretes approaching without exceeding those of the reference fiber concrete. The fiber concretes are also considered to be of good quality. It seems that the rate of 10 % of pyrophyllite generates the best physical-mechanical performances that approach those of the reference fiber concrete. The use of pyrophyllite as a cement substitution is beneficial since it can help to decrease the production of cement; the amount of CO2 released and protects the environment.


2020 ◽  
Vol 150 ◽  
pp. 02012
Author(s):  
Mohammed Aqil ◽  
Lahcen Bahi ◽  
Latifa Ouadif ◽  
Siham Belhaj ◽  
Raounak Edderkaoui

An experimental company was carried out to better understand the influence of curing temperature on the mechanical behaviour of cementitious materials, particularly compressive strength, the study focused on two types of mortars, the first containing polypropylene fibers while the second contains a proportion of PVC-type plastic grains from industrial waste, the hydration kinetics of the different components of the formulated mortar has been characterized by the isothermal calorimetric test, thus a history of the hydration degrees has been established, Afterwards, an attempt was made to correlate the compressive strength with the evolution of the degree of hydration for the different formulations, based on the results obtained, it is clearly observable that the compressive strength evolves with the degree of hydration and that the specimen containing the polypropylene fibers has the best mechanical performance with respect to compression.


Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1041 ◽  
Author(s):  
Francisco J. Alonso-Montemayor ◽  
Quim Tarrés ◽  
Helena Oliver-Ortega ◽  
F. Xavier Espinach ◽  
Rosa Idalia Narro-Céspedes ◽  
...  

Automotive and industrial design companies have profusely used commodity materials like glass fiber-reinforced polypropylene. These materials show advantageous ratios between cost and mechanical properties, but poor environmental yields. Natural fibers have been tested as replacements of glass fibers, obtaining noticeable tensile strengths, but being unable to reach the strength of glass fiber-reinforced composites. In this paper, polyamide 6 is proposed as a matrix for cellulosic fiber-based composites. A variety of fibers were tensile tested, in order to evaluate the creation of a strong interphase. The results show that, with a bleached hardwood fiber-reinforced polyamide 6 composite, it is possible to obtain tensile strengths higher than glass-fiber-reinforced polyolefin. The obtained composites show the existence of a strong interphase, allowing us to take advantage of the strengthening capabilities of such cellulosic reinforcements. These materials show advantageous mechanical properties, while being recyclable and partially renewable.


2018 ◽  
Vol 32 (4) ◽  
pp. 501-520 ◽  
Author(s):  
Cevdet Kaynak ◽  
S Deniz Varsavas

The purpose of this study was to compare the performance of polylactide (PLA)-based materials shaped by the traditional injection molding technique versus three-dimensional (3D)-printing additive manufacturing. Comparisons were performed not only for neat PLA but also for its thermoplastic polyurethane elastomer (TPU) blend and for its E-glass fiber (GF)-reinforced composites. Performance comparison of the injection-molded and 3D-printed specimens was especially conducted to compare their mechanical properties (strength–modulus–toughness) by tensile, flexural, and fracture toughness tests. Other comparisons such as their macro-level appearances, fracture surface morphology, and thermal behavior were also performed by photographic images, scanning electron microscopy, differential scanning calorimetry, and thermogravimetric analysis. It can be concluded that the use of 3D-printing in the shaping of neat PLA and PLA/TPU blend was generally very beneficial; on the other hand, due to the differences in the orientation of the GF reinforcements, there could be certain reductions in the mechanical performance of PLA/GF and PLA/TPU/GF composite specimens.


2013 ◽  
Vol 461 ◽  
pp. 241-246 ◽  
Author(s):  
Yi Song ◽  
Zhou Yi Wang ◽  
Ai Hong Ji ◽  
Zhen Dong Dai

The biomaterials with excellent properties such as high strength-weights ratio and so on will inspire inspirations about bionic composite materials to satisfy the scalding hypercriticisms for aerial materials. The investigations of biomaterial mechanical performances are of great advantages in bionic designs and bionic manufactures. The mechanical performances of Bamboo BeetlesOtidognathus Davidis Fairs abdominal shells were tested with a nanoindenter in this paper. The experiments results demonstrated that the harnesses and modulus are different at different test areas. The mechanical performances resemble much at the same latitude but decrease along longitude from the forehead to the rearward, indicating that the mechanical performances of the abdominal shells distribute topologically. Whats more, the topological distributions of mechanical performances illustrate a kind of unlearned structure optimizations of insects which will provide edifications to designs of light and strong materials.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4095
Author(s):  
Qing Chen ◽  
Zhiyuan Zhu ◽  
Rui Ma ◽  
Zhengwu Jiang ◽  
Yao Zhang ◽  
...  

In this paper, the mechanical performance of an ultra-high-performance concrete (UHPC) repaired cementitious composite system, including the old matrix and the new reinforcement (UHPC), under various high temperature levels (20 °C, 100 °C, 300 °C, and 500 °C) was studied. In this system, UHPC reinforced with different contents of steel fibers and polypropylene (PP) fibers was utilized. Moreover, the physical, compressive, bonding, and flexural behaviors of the UHPC repaired system after being exposed to different high temperatures were investigated. Meanwhile, X-ray diffraction (XRD), baseline evaluation test (BET), and scanning electron microscope (SEM) tests were conducted to analyze the effect of high temperature on the microstructural changes in a UHPC repaired cementitious composite system. Results indicate that the appearance of the bonded system changed, and its mass decreased slightly. The average percentage of residual mass of the system was 99.5%, 96%, and 94–95% at 100 °C, 300 °C, and 500 °C, respectively. The residual compressive strength, bonding strength, and flexural performance improved first and then deteriorated with the increase of temperature. When the temperature reached 500 °C, the compressive strength, bonding strength, and flexural strength decreased by about 20%, 30%, and 15% for the UHPC bonded system, respectively. Under high temperature, the original components of UHPC decreased and the pore structure deteriorated. The cumulative pore volume at 500 °C could reach more than three times that at room temperature (about 20 °C). The bonding showed obvious deterioration, and the interfacial structure became looser after exposure to high temperature.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Luigi Coppola ◽  
Denny Coffetti ◽  
Sergio Lorenzi

The paper focuses on the evaluation of the rheological and mechanical performances of cement-based renders manufactured with phase-change materials (PCM) in form of microencapsulated paraffin for innovative and ecofriendly residential buildings. Specifically, cement-based renders were manufactured by incorporating different amount of paraffin microcapsules—ranging from 5% to 20% by weight with respect to binder. Specific mass, entrained or entrapped air, and setting time were evaluated on fresh mortars. Compressive strength was measured over time to evaluate the effect of the PCM addition on the hydration kinetics of cement. Drying shrinkage was also evaluated. Experimental results confirmed that the compressive strength decreases as the amount of PCM increases. Furthermore, the higher the PCM content, the higher the drying shrinkage. The results confirm the possibility of manufacturing cement-based renders containing up to 20% by weight of PCM microcapsules with respect to binder.


2021 ◽  
Vol 11 (3) ◽  
pp. 1037
Author(s):  
Se-Jin Choi ◽  
Ji-Hwan Kim ◽  
Sung-Ho Bae ◽  
Tae-Gue Oh

In recent years, efforts to reduce greenhouse gas emissions have continued worldwide. In the construction industry, a large amount of CO2 is generated during the production of Portland cement, and various studies are being conducted to reduce the amount of cement and enable the use of cement substitutes. Ferronickel slag is a by-product generated by melting materials such as nickel ore and bituminous coal, which are used as raw materials to produce ferronickel at high temperatures. In this study, we investigated the fluidity, microhydration heat, compressive strength, drying shrinkage, and carbonation characteristics of a ternary cement mortar including ferronickel-slag powder and fly ash. According to the test results, the microhydration heat of the FA20FN00 sample was slightly higher than that of the FA00FN20 sample. The 28-day compressive strength of the FA20FN00 mix was approximately 39.6 MPa, which was higher than that of the other samples, whereas the compressive strength of the FA05FN15 mix including 15% of ferronickel-slag powder was approximately 11.6% lower than that of the FA20FN00 mix. The drying shrinkage of the FA20FN00 sample without ferronickel-slag powder was the highest after 56 days, whereas the FA00FN20 sample without fly ash showed the lowest shrinkage compared to the other mixes.


2017 ◽  
Vol 26 (1) ◽  
pp. 096369351702600
Author(s):  
Sun Yafei ◽  
Gao Peiwei ◽  
Peng Hailong ◽  
Liu Hongwei ◽  
Lu Xiaolin ◽  
...  

This paper presents the microstructures and mechanical and absorbing properties of double and triple layer, cement-based, composite panels. The results obtained show that the frequency range in 2-18GHz had less than −10dB effective bandwidth, which correlates with 3.7and 10.8GHz in double and triple layer cement-based composite panels. Furthermore, the double layer panel's compressive strength at 7 and 28 days was 40.2 and 61.2MPa, respectively. For the triple layer panel, the strength values were 35.6MPa and 49.2MPa. The triple layer panel's electromagnetic wave (EMW) absorbing properties were superior compared to the properties of the double layer panel. However, the triple layer panel's mechanical performance was inferior to that of the double layer panel. This study proposes that carbon nanotubes can effectively improve the compressive strength and interface structure of cement-based composite panels.


Sign in / Sign up

Export Citation Format

Share Document