Exergy Analysis of a Micro-Gas Turbine Fueled with Syngas

2013 ◽  
Vol 465-466 ◽  
pp. 142-148
Author(s):  
Hussain Sadig ◽  
Shaharin Anwar Sulaiman ◽  
Ibrahim Idris

A theoretical exergetic analysis of a small-scale gas-turbine system fueled with two different syngas fuels is discussed in this paper. For carrying out the analysis, a micro-gas turbine system with a thermal heat input of 50 kW was simulated using ASPEN plus simulator. Quantitative exergy balance was applied for each component in the cycle. The effects of excess air, ambient air temperature, and heat input on the exergy destruction and exergetic efficiency for each component were evaluated and compared with those resulted from fueling the system with liquefied petroleum gas (LPG). For 50 kW heat input and 50% excess air, the total exergy destruction for LPG, Syngas1, and Syngas2 were found to be 17.3, 14.3, and 13.6 kW, respectively. It was found that increasing the excess air ratio to 100% increased the combustion chamber exergetic efficiency by 8%-10% but it reduced the exergetic efficiency of other components. The same trend was observed when tested ambient air temperature. The results also showed a reduction in the combustion chamber exergetic efficiency by 2%-4% when a 20% heat input increase was applied.

Author(s):  
Henry Egware ◽  
Albert I. Obanor ◽  
Harrison Itoje

Energy and exergy analyses were carried out on an active 42MW open cycle gas turbine power plant. Data from the power plant record book were employed in the investigation. The First and Second Laws of Thermodynamics were applied to each component of the gas power plant at ambient air temperature range of 21 - 330C. Results obtained from the analyses show that the energy and exergy efficiencies decrease with increase in ambient air temperature entering the compressor. It was also shown that 66.98% of fuel input and 54.53% of chemical exergy are both lost to the environment as heat from the combustion chamber in the energy and exergy analysis respectively. The energy analysis quantified the efficiency of the plant arising from energy losses , while exergy analysis revealed the magnitude of losses in various components of the plant. Therefore a complete thermodynamic evaluation of gas turbine power plants requires the use of both analytical methods.


Author(s):  
Hiroyuki Sato ◽  
Xing L. Yan ◽  
Hirofumi Ohashi ◽  
Yukio Tachibana ◽  
Kazuhiko Kunitomi

An original control strategy for very high temperature reactor (VHTR) gas-turbine system with dry cooling against ambient air temperature fluctuation was established in order to enable the freedom of site selection wherever desired without significant drawbacks on the performance. First, the operability of power conversion system and degradation of power generation efficiency were examined considering not only the thermodynamics but also the mechanical efficiency of compressor based on detailed performance map derived from experimental data. Second, control simulations for large ambient temperature fluctuations were conducted by system analysis code with the built-in control strategy. In addition, the sensitivity of power generation efficiency for typical steam cycle with dry cooling to ambient air temperature changes was assessed for the comparison. It was shown that the design goal can be effectively met simply by monitoring and controlling a few of key operating parameters such as reactor outlet temperature, primary coolant pressure. Furthermore, distinctive advantages of the VHTR gas-turbine system over nuclear power plant employing Rankine cycle was demonstrated when installing in inland area.


Author(s):  
Awaludin Martin ◽  
Nur Indah Rivai ◽  
Rahmat Dian Amir ◽  
Nasruddin

In this study, exergoeconomic analysis was carry out on a 21.6MW gas turbine power plant by using logbooks record Pekanbaru Unit. The exergy analysis was start to determine the exergy destruction of each component of the power plant based on the first and second laws of thermodynamics and in this study, exergy and economic analysis were combined and used to evaluate the accrued cost caused by irreversibility, including the cost of investment in each component. The exergy analysis results showed that the location of the largest destruction was in the combustion chamber with 21,851.18 kW, followed by the compressor and gas turbine with 8,495.48 kW and 3,094.34 kW, respectively. The economic analysis resulted that the total cost loss due to exergy destruction was 2,793.14$/hour, consisting of compressor 1,066.43$/hour, combustion chamber 1,561.46$/hour and gas turbine 165.25$/hour. The thermal and exergetic efficiency of gas turbine power plant were 24.51% and 22.73% respectively.


2021 ◽  
Vol 5 (1) ◽  
pp. 15-21
Author(s):  
Ni Ketut Caturwati ◽  
Yusvardi Yusuf ◽  
Muhammad Ilham Al Faiz

The heat exchanger is an important component in the gas and steam power plant (PLTGU) industry. One of the most important heat exchangers in gas turbine cooling systems is the gas turbine radiator. The gas turbine radiator functions to cool the cooling water, which circulated to various components of the gas turbine by using environmental air as the cooling medium. The purpose of this study was to determine the effect of environmental temperature on the performance of gas turbine radiators and to compare operational data in 2017 with operational data when the study conducted in 2019. Data collected for 3 days with 2-3 hour intervals. Data processing and analysis shows that the higher the ambient temperature, the higher the radiator effectiveness value. Data in 2017 shows the highest average value of effectiveness obtained at an ambient air temperature of 35 ˚C of 71,274%. Meanwhile, data in 2019 shows the highest average value of effectiveness at an ambient air temperature of 35 ˚C of 58,859%. Thus, the average effectiveness value of gas turbine radiators has decreased by 12,415% from 2017 to 2019


1982 ◽  
Vol 17 (1) ◽  
pp. 135-148
Author(s):  
P.T. Wong ◽  
D.S. Mavinic

Abstract The treatability of a municipal leachate (BOD5 = 8090 mg/L) was investigated, by aerobic biostabilization, at a nutrient loading of BOD5:N:P of 100:3.2:1.1. The first stage effluents were subsequently polished by lime-magnesium coagulation. The ranges of ambient air temperature and sludge age studied were 5° to 25°C and 5 to 20 days, respectively. In the biostabilization phase, a BOD5:N:P loading of 100:3.2:1.1 was found to be “adequate” for treatment. Organic and metal removals in the first stage units were excellent. Under all conditions investigated, except for the two units close to washout conditions (5-day sludge age units at 5° and 10°C), BOD5 and COD removals of at least 99.4 and 96.4 percent, respectively, were achieved. Similarly, removal rates for most of the metals monitored were greater than 90 percent. In general, the removal of residual contaminants was not enhanced significantly by the addition of magnesium in the lime-magnesium polishing step.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3398
Author(s):  
Yi Long ◽  
Kun Liu ◽  
Yongli Zhang ◽  
Wenzhe Li

Inorganic cesium lead halide perovskites, as alternative light absorbers for organic–inorganic hybrid perovskite solar cells, have attracted more and more attention due to their superb thermal stability for photovoltaic applications. However, the humid air instability of CsPbI2Br perovskite solar cells (PSCs) hinders their further development. The optoelectronic properties of CsPbI2Br films are closely related to the quality of films, so preparing high-quality perovskite films is crucial for fabricating high-performance PSCs. For the first time, we demonstrate that the regulation of ambient temperature of the dry air in the glovebox is able to control the growth of CsPbI2Br crystals and further optimize the morphology of CsPbI2Br film. Through controlling the ambient air temperature assisted crystallization, high-quality CsPbI2Br films are obtained, with advantages such as larger crystalline grains, negligible crystal boundaries, absence of pinholes, lower defect density, and faster carrier mobility. Accordingly, the PSCs based on as-prepared CsPbI2Br film achieve a power conversion efficiency of 15.5% (the maximum stabilized power output of 15.02%). Moreover, the optimized CsPbI2Br films show excellent robustness against moisture and oxygen and maintain the photovoltaic dark phase after 3 h aging in an air atmosphere at room temperature and 35% relative humidity (R.H.). In comparison, the pristine films are completely converted to the yellow phase in 1.5 h.


Author(s):  
Chi-Rong Liu ◽  
Hsin-Yi Shih

The purpose of this study is to investigate the combustion and emission characteristics of syngas fuels applied in a micro gas turbine, which is originally designed for a natural gas fired engine. The computation results were conducted by a numerical model, which consists of the three-dimension compressible k–ε model for turbulent flow and PPDF (presumed probability density function) model for combustion process. As the syngas is substituted for methane, the fuel flow rate and the total heat input to the combustor from the methane/syngas blended fuels are varied with syngas compositions and syngas substitution percentages. The computed results presented the syngas substitution effects on the combustion and emission characteristics at different syngas percentages (up to 90%) for three typical syngas compositions and the conditions where syngas applied at fixed fuel flow rate and at fixed heat input were examined. Results showed the flame structures varied with different syngas substitution percentages. The high temperature regions were dense and concentrated on the core of the primary zone for H2-rich syngas, and then shifted to the sides of the combustor when syngas percentages were high. The NOx emissions decreased with increasing syngas percentages, but NOx emissions are higher at higher hydrogen content at the same syngas percentage. The CO2 emissions decreased for 10% syngas substitution, but then increased as syngas percentage increased. Only using H2-rich syngas could produce less carbon dioxide. The detailed flame structures, temperature distributions, and gas emissions of the combustor were presented and compared. The exit temperature distributions and pattern factor (PF) were also discussed. Before syngas fuels are utilized as an alternative fuel for the micro gas turbine, further experimental testing is needed as the modeling results provide a guidance for the improved designs of the combustor.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Younes Bahammou ◽  
Mounir Kouhila ◽  
Haytem Moussaoui ◽  
Hamza Lamsyehe ◽  
Zakaria Tagnamas ◽  
...  

PurposeThis work aims to study the hydrothermal behavior of mortar cement toward certain environmental factors (ambient air temperature and air velocity) based on its drying kinetics data. The objective is to provide a better understanding and controlling the stability of mortar structures, which integrate the sorption phenomenon, drying process, air pressure and intrinsic characteristics. This leads to predict the comportment of mortar structures in relation with main environmental factors and minimize the risk of cracking mortar structures at an early age.Design/methodology/approachThermokinetic study was carried out in natural and forced convection solar drying at three temperatures 20, 30 and 40°C and three air velocities (1, 3 and 5 m.s-1). The empirical and semiempirical models tested successfully describe the drying kinetics of mortar. These models simulate the drying process of water absorbed by capillarity, which is the most common humidity transfer mechanism in building materials and contain parameters with physical significance, which integrate the effect of several environmental factors and intrinsic characteristics of mortar structures.FindingsThe models simulate the drying process of water absorbed by capillarity, which is the most common humidity transfer mechanism in building materials and contain parameters with physical significance, which integrate the effect of several environmental factors and intrinsic characteristics of mortar structures. The average activation energy obtained expressed the temperature effect on the mortar diffusivity. The drying constant and the diffusion coefficient can be used to predict the influence of these environmental factors on the drying behavior of various building materials and therefore on their durability.Originality/valueEvaluation of the effect of several environmental factors and intrinsic characteristics of mortar structures on their durability.


10.1289/ehp92 ◽  
2016 ◽  
Vol 124 (12) ◽  
pp. 1882-1890 ◽  
Author(s):  
Maria C. Mirabelli ◽  
Ambarish Vaidyanathan ◽  
W. Dana Flanders ◽  
Xiaoting Qin ◽  
Paul Garbe

Sign in / Sign up

Export Citation Format

Share Document