Research on Vibration Isolation and Thermal Insulation of the Polystyrene-Filled Sandwich Panel with Cross-Shaped Periodic Ribs

2013 ◽  
Vol 470 ◽  
pp. 1069-1072
Author(s):  
Gao Shan Shi ◽  
Gui Lan Yu

This paper is aimed to study the vibration isolation and thermal insulation of the polystyrene-filled sandwich panels with cross-shaped ribs. Based on Blochs theorem, band structure of the sandwich panels can be obtained by Comsol Multiphysics software. According to the Fouriers law and the minimum resistance law, the equivalent thermal resistance can be calculated both numerically and theoretically. The studies show that this periodic sandwich panels exhibit a good performance on vibration isolation and thermal insulation.

Author(s):  
Paweł Roszkowski ◽  
Paweł Sulik

<p>Sandwich panel is the material that is easy and quickly to install. Basing on a great experience in the area of determination of the fire resistance class of construction building elements the authors describe the properties and behavior of building elements made of the sandwich panels exposed to fire. The article presents the results of fire resistance tests carried out in accordance with EN 1364-1 non-bearing walls made of sandwich panels with use of different cores.</p>The following parameters were analyzed: temperature rise on unexposed side (I – thermal insulation), integrity (E) depending on the orientations and on the width of the sandwich panels, deflection depending on the thickness of the boards. Conclusions were made on the base of the analysis from fire resistance tests.


2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110094
Author(s):  
Ibrahim Elnasri ◽  
Han Zhao

In this study, we numerically investigate the impact perforation of sandwich panels made of 0.8 mm 2024-T3 aluminum alloy skin sheets and graded polymeric hollow sphere cores with four different gradient profiles. A suitable numerical model was conducted using the LS-DYNA code, calibrated with an inverse perforation test, instrumented with a Hopkinson bar, and validated using experimental data from the literature. Moreover, the effects of quasi-static loading, landing rates, and boundary conditions on the perforation resistance of the studied graded core sandwich panels were discussed. The simulation results showed that the piercing force–displacement response of the graded core sandwich panels is affected by the core density gradient profiles. Besides, the energy absorption capability can be effectively enhanced by modifying the arrangement of the core layers with unclumping boundary conditions in the graded core sandwich panel, which is rather too hard to achieve with clumping boundary conditions.


2013 ◽  
Vol 135 (6) ◽  
Author(s):  
Zhongchang Qian ◽  
Daoqing Chang ◽  
Bilong Liu ◽  
Ke Liu

An approach on the prediction of sound transmission loss for a finite sandwich panel with honeycomb core is described in the paper. The sandwich panel is treated as orthotropic and the apparent bending stiffness in two principal directions is estimated by means of simple tests on beam elements cut from the sandwich panel. Utilizing orthotropic panel theory, together with the obtained bending stiffness in two directions, the sound transmission loss of simply-supported sandwich panel is predicted by the modal expansion method. Simulation results indicated that dimension, orthotropy, and loss factor may play important roles on sound transmission loss of sandwich panel. The predicted transmission loss is compared with measured data and the agreement is reasonable. This approach may provide an efficient tool to predict the sound transmission loss of finite sandwich panels.


2017 ◽  
Vol 17 (1) ◽  
pp. 20-26 ◽  
Author(s):  
Ali Afzal ◽  
Sheraz Ahmad ◽  
Abher Rasheed ◽  
Faheem Ahmad ◽  
Fatima Iftikhar ◽  
...  

Abstract The aim of this study was to analyse the effects of various fabric parameters on the thermal resistance, thermal conductivity, thermal transmittance, thermal absorptivity and thermal insulation of polyester/cotton double layer knitted interlock fabrics. It was found that by increasing fibre content with higher specific heat increases the thermal insulation while decreases the thermal transmittance and absorptivity of the fabric. It was concluded that double layer knitted fabrics developed with higher specific heat fibres, coarser yarn linear densities, higher knitting loop length and fabric thickness could be adequately used for winter clothing purposes.


Materials ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 54 ◽  
Author(s):  
Zipeng Qin ◽  
Gang Li ◽  
Yan Tian ◽  
Yuwei Ma ◽  
Pengfei Shen

The effects of fly ash, sodium carbonate content, foaming temperature and foaming time on foam glass aperture sizes and their distribution were analyzed by the orthogonal experimental design. Results from the steady-state method showed a normal distribution of the number of apertures with change in average aperture, which ranges from 0.1 to 2.0 mm for more than 93% of apertures. For a given porosity, the thermal conductivity decreases with the increase of the aperture size. The apertures in the sample have obvious effects in blocking the heat flow transmission: heat flow is quickly diverted to both sides when encountered with the aperture. When the thickness of the sample is constant, the thermal resistance of the foam glass sample increases with increasing porosity, leading to better thermal insulation. Furthermore, our results suggest that the more evenly distributed and orderly arranged the apertures are in the foam glass material, the larger the thermal resistance of the material and hence, the better the thermal insulation.


2018 ◽  
Vol 245 ◽  
pp. 06002 ◽  
Author(s):  
Jurgis Zemitis ◽  
Maxim Terekh

In the work, methods of an estimation of economic efficiency of additional heat insulation of building enclosing structures and definition of an optimum thermal resistance are considered, deficiencies of the given techniques are marked. A model is proposed for determining the optimal level of heat protection in the new economic conditions.


2020 ◽  
Vol 211 ◽  
pp. 109790
Author(s):  
Bo Su ◽  
Jiale Chen ◽  
Jianming Hao ◽  
Xuhong Fan ◽  
Xiangke Han

Sign in / Sign up

Export Citation Format

Share Document