Production of Composite Material by FDM Rapid Prototyping Technology

2014 ◽  
Vol 474 ◽  
pp. 186-191 ◽  
Author(s):  
Ludmila Novakova-Marcincinova ◽  
Jozef Novak-Marcincin

In the paper is presented information about common and advanced materials used for manufacturing of products by Fused Deposition Modelling (FDM) rapid prototyping technology. In different rapid prototyping technologies the initial state of material can come in either solid, liquid or powder state. The current range materials include paper, nylon, wax, resins, metals and ceramics. In FDM are mainly used as basic materials ABS - Acrylonitrile Butadiene Styrene, polyamide, polycarbonate, polyethylene and polypropylene. Main part of the paper is focused on experimental production and testing of composite material produced by rapid prototyping realized by Fused Deposition Modelling (FDM) method and presents outputs of testing of ABS/glass texture material realized by authors.

2013 ◽  
Vol 740 ◽  
pp. 597-602 ◽  
Author(s):  
Ludmila Novakova-Marcincinova ◽  
Jozef Novak-Marcincin

In this paper are presented information about common and advanced materials used for manufacturing of products by Fused Deposition Modelling (FDM) rapid prototyping technology. In different rapid prototyping technologies the initial state of material can come in either solid, liquid or powder state. The current range materials include paper, nylon, wax, resins, metals and ceramics. In FDM are mainly used as basic materials ABS - Acrylonitrile Butadiene Styrene, polyamide, polycarbonate, polyethylene and polypropylene. Main part of the paper is focused on experimental testing of rapid prototyping materials realized by different research teams and presents outputs of testing of ABS material in FDM technology realized by authors.


2013 ◽  
Vol 309 ◽  
pp. 133-140 ◽  
Author(s):  
Ludmila Novakova-Marcincinova ◽  
Jozef Novak-Marcincin

In paper are presented knowledge about types and properties of materials used for production of models using by rapid prototyping Fused Deposition Modelling (FDM) method. In today used rapid prototyping technologies is used material in initial state as solid, liquid or powder material structure. In solid state are used various forms such as pellets, wire or laminates. Basic range materials include paper, nylon, wax, resins, metals and ceramics. In FDM rapid prototyping technology are mainly used as basic materials ABS (Acrylonitrile Butadiene Styrene), polyamide, polycarbonate, polyethylene and polypropylene. For advanced FDM applications are used special materials as silicon nitrate, PZT (Piezoceramic Material - Lead Zirconate Titanate), aluminium oxide, hydroxypatite and stainless steel.


2014 ◽  
Vol 912-914 ◽  
pp. 370-373 ◽  
Author(s):  
Ludmila Novakova-Marcincinova ◽  
Jozef Novak-Marcincin

In paper are presented information about materials used for production of models by Fused Deposition Modeling (FDM) rapid prototyping technology. In today's rapid prototyping technologies the initial state of building material can be in solid, liquid or powder state. The current range materials include plastic, nylon, wax, resins, metals and ceramics. In FDM are mainly used as basic materials ABS - Acrylonitrile Butadiene Styrene, polyamide, polycarbonate, polyethylene and polypropylene. Main part of the paper is focused on experimental testing of Acrylonitrile Butadiene Styrene materials realized by different research teams and presents outputs of testing of ABS material in FDM technology realized by authors.


2016 ◽  
Vol 61 (2) ◽  
pp. 891-896 ◽  
Author(s):  
P. Dudek ◽  
A. Rapacz-Kmita

AbstractIn the context of product development, the term rapid prototyping (RP) is widely used to describe technologies which create physical prototypes directly from digital data. Recently, this technology has become one of the fastest-growing methods of manufacturing parts. The paper provides brief notes on the creation of composites using RP methods, such as stereolithography, selective laser sintering or melting, laminated object modelling, fused deposition modelling or three-dimensional printing. The emphasis of this work is on the methodology of composite fabrication and the variety of materials used in these technologies.


2021 ◽  
Author(s):  
M. Hossein Sehhat ◽  
Ali Mahdianikhotbesara ◽  
Farzad Yadegari

Abstract Additive Manufacturing (AM) can be deployed for space exploration purposes, such as fabricating different components of robots’ bodies. The produced AM parts should have desirable thermal and mechanical properties to withstand the extreme environmental conditions, including the severe temperature variations on moon or other planets which cause changes in parts’ strengths and may fail their operation. Therefore, the correlation between operational temperature and mechanical properties of AM fabricated parts should be evaluated. In this study, three different types of polymers, including polylactic acid (PLA), polyethylene terephthalate glycol (PETG), and acrylonitrile butadiene styrene (ABS), were used in Fused Deposition Modeling (FDM) process to fabricate several parts. The mechanical properties of produced parts were then investigated at various temperatures to generate knowledge on the correlation between temperature and type of material. When varying the operational temperature during tensile tests, the material’s glass transition temperature was found influential in determining the type of material failure. Among the materials used, ABS showed the best mechanical properties at all temperatures due to its highest glass transmission temperatures. The results of statistical analysis indicated the temperature as the significant factor on tensile strength while the change in material did not show a significant effect.


Author(s):  
R. C. Pennington ◽  
N. L. Hoekstra ◽  
J. L. Newcomer

This project investigated the dimensional accuracy of parts produced using the rapid prototyping method of fused deposition modelling (FDM). Parts with six features common to products were created on a Stratasys FDM2000 out of acrylonitrile butadiene styrene and then measured with a coordinate measurement machine and digital micrometers. An analysis of 12 different dimensions on parts produced using FDM identified that part size, location in the work envelope, and envelope temperature had a significant effect on the dimensional accuracy of FDM.


2018 ◽  
Vol 24 (6) ◽  
pp. 921-934 ◽  
Author(s):  
Mohammad Abu Hasan Khondoker ◽  
Asad Asad ◽  
Dan Sameoto

Purpose This paper aims to target to print functionally gradient materials (FGM) devices made of immiscible polymers in multi-material fused deposition modelling (FDM) systems. The design is intended to improve adhesion of dissimilar thermoplastics without the need for chemical compatibilization so that filaments from many different sources can be used effectively. Therefore, there is a need to invent an alternative solution for printing multiple immiscible polymers in an FDM system with the desired adhesion. Design/methodology/approach In this study, the authors have developed a bi-extruder for FDM systems which can print two thermoplastics through a single nozzle with a static intermixer to enhance bonding between input materials. The system can also change the composition of extrudates continuously. Findings The uniqueness of this extruder is in its easy access to the internal channel so that a static intermixer can be inserted, enabling deposition of mechanically interlocked extrudates composed of two immiscible polymers. Without this intermixer, the bi-extruder extrudes with simple side-by-side co-extrusion having no mechanical interlocking. The bi-extruder was characterized by printing objects using pairs of materials including polylactic acid, acrylonitrile butadiene styrene and high impact polystyrene. Microscope images of the cross-sections of the extrudates confirm the ability of this bi-extruder to control the composition as desired. It was also found that the mechanically interlocked extrudates composed of two immiscible polymers substantially reduces adhesion failures within and between filaments. Originality/value In this study, the first-ever FDM extruder with a mechanical blending feature next to the nozzle has been designed and used to successfully print FGM objects with improved mechanical properties.


Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1333 ◽  
Author(s):  
Adrián Rodríguez-Panes ◽  
Juan Claver ◽  
Ana Camacho

This paper presents a comparative study of the tensile mechanical behaviour of pieces produced using the Fused Deposition Modelling (FDM) additive manufacturing technique with respect to the two types of thermoplastic material most widely used in this technique: polylactide (PLA) and acrylonitrile butadiene styrene (ABS). The aim of this study is to compare the effect of layer height, infill density, and layer orientation on the mechanical performance of PLA and ABS test specimens. The variables under study here are tensile yield stress, tensile strength, nominal strain at break, and modulus of elasticity. The results obtained with ABS show a lower variability than those obtained with PLA. In general, the infill percentage is the manufacturing parameter of greatest influence on the results, although the effect is more noticeable in PLA than in ABS. The test specimens manufactured using PLA perform more rigidly and they are found to have greater tensile strength than ABS. The bond between layers in PLA turns out to be extremely strong and is, therefore, highly suitable for use in additive technologies. The methodology proposed is a reference of interest in studies involving the determination of mechanical properties of polymer materials manufactured using these technologies.


2018 ◽  
Vol 184 ◽  
pp. 02013
Author(s):  
Tamás Templom ◽  
Timotei István Erdei ◽  
Zsolt Molnár ◽  
Edwin Shaw ◽  
Géza Husi

The pinnacle of 3D printing is its effect on the field of rapid prototyping. The major advantage comes from the fact that designers can quickly materialize a part or object, which then could be tested in practice, and can be effortlessly modified if needed. This obviously cuts the development expenses and time by a significant percent. Moreover, it’s possible to create complex and precise shapes with the technology, which would take more time and would be resource intensive if done by older methods, for example manual or automatic machining.


Author(s):  
Andrew Aitchison ◽  
Qing Wang

Abstract Additive manufacture, specifically Fused Deposition Modeling (FDM), is an advancing manufacture method opening up new possibilities in design previously impossible to machine, in a relatively affordable way. However, its use in functional products is limited due to anisotropic strength and reduced strength from injection molded components. This paper aims to increase the tensile strength of Acrylonitrile Butadiene Styrene (ABS) in the weakest direction (Z axis), where poor interlayer fusion and air gaps between extruded trails reduce strength. Extra thermal energy was applied to the top surface layer during the printing process (through hot air) to encourage more polymer chain diffusion across the boundary, and spreading out to fill air gaps. Multiple tensile test samples were printed at a variety of heat levels. The ultimate tensile strength σuts was plotted against these temperatures and a weak positive correlation was found. However, only air temperatures above 81°C increased strength past the control to a maximum of 1.4MPa. Heat application has proven to increase tensile strength, but needs to be applied with a more precise method, to the boundary interface, to allow greater thermal energy transfer without sacrificing print quality.


Sign in / Sign up

Export Citation Format

Share Document