The Adsorption Isotherm Studies of Orange Peel on Pesticide Furadan

2013 ◽  
Vol 477-478 ◽  
pp. 1331-1335
Author(s):  
Guang Fu Xu ◽  
Hui Min Jing ◽  
Rui Xin Guo

Orange peel, an agricultural waste available in large quantity in China, was utilized as low-cost adsorbent to remove furadan from aqueous solution by adsorption. Adsorption isotherms were calculated and discussed. Both Langmuir and Freundlich models fitted the adsorption data quite reasonably (R2> 0.98) and the maximum adsorption capacity was 161.29 mg.g-1. The results in this study indicated that orange peel was an attractive candidate for removing furadan from the aqueous solution.

2008 ◽  
Vol 26 (9) ◽  
pp. 679-686 ◽  
Author(s):  
M. Sathishkumar ◽  
J.G. Choi ◽  
C.S. Ku ◽  
K. Vijayaraghavan ◽  
A.R. Binupriya ◽  
...  

This paper reports the adsorption ability of banana pith activated carbon, with ZnCl2 as the porogen, towards carbaryl (1-naphthyl- N-methylcarbamate) from aqueous solution. The pH-edge experiments revealed that carbaryl adsorption onto ZnCl2-treated banana pith activated carbon (ZTC) was a pH-dependent process with maximum adsorption occurring at pH 11. The adsorption isotherm obtained at pH 11 revealed that ZTC possessed a maximum adsorption capacity of 45.9 mg/g. The adsorption isotherms were well described by the Langmuir and Freundlich models. The kinetic data obtained at different initial carbaryl concentrations were modelled using pseudo-first- and -second-order models. Acetone successfully desorbed carbaryl with a 99.8% elution efficiency.


2014 ◽  
Vol 9 (1) ◽  
pp. 166-174 ◽  
Author(s):  
Rajeshwar M. Shrestha ◽  
Margit Varga ◽  
Imre Varga ◽  
Amar P. Yadav ◽  
Bhadra P. Pokharel ◽  
...  

Activated carbons were prepared from Lapsi seed stone by the treatment with H2SO4 and HNO3 for the removal of Ni (II) ions from aqueous solution. Two activated carbon have been prepared from Lapsi seed stones by treating with conc.H2SO4 and a mixture of H2SO4 and HNO3 in the ratio of 1:1 by weight for removal of Ni(II) ions. Chemical characterization of the resultant activated carbons was studied by Fourier Transform Infrared Spectroscopy and Boehm titration which revealed the presence of oxygen containing surface functional groups like carboxyl, lactones and phenols in the carbons. The optimum pH for nickel adsorption is found to be 5. The adsorption data were better fitted with the Langmuir equations than Freundlich adsorption equation to describe the equilibrium isotherms. The maximum adsorption capacity of Ni (II) on the resultant activated carbons was 28.25.8 mg g-1 with H2SO4 and 69.49 mg g-1 with a mixture of H2SO4 and HNO3. The waste material used in the preparation of the activated carbons is inexpensive and readily available. Hence the carbons prepared from Lapsi seed stones can act as potential low cost adsorbents for the removal of Ni (II) from water. DOI: http://dx.doi.org/10.3126/jie.v9i1.10680Journal of the Institute of Engineering, Vol. 9, No. 1, pp. 166–174


2020 ◽  
Vol 1010 ◽  
pp. 489-494
Author(s):  
Abdul Hafidz Yusoff ◽  
Rosmawani Mohammad ◽  
Mardawani Mohamad ◽  
Ahmad Ziad Sulaiman ◽  
Nurul Akmar Che Zaudin ◽  
...  

Conventional methods to remove heavy metals from polluted water are expensive and not environmentally friendly. Therefore, this study was carried out to investigate the potential of agricultural waste such as pineapple peel (Ananas Cosmos) as low-cost absorbent to remove heavy metals from synthetic polluted water. The results showed that Cd, Cr and Pb were effectively removed by the biosorbent at 12g of pineapple peels in 100 mL solution. The optimum contact time for maximum adsorption was found to be 90 minutes, while the optimum pH for the heavy metal’s adsorption was 9. It was demonstrated that with the increase of adsorbent dosage, the percent of heavy metals removal was also increased due to the increasing adsorption capacity of the adsorbent. In addition, Langmuir model show maximum adsorption capacity of Cd is 1.91 mg/g. As conclusions, our findings show that pineapple peel has potential to remove heavy metal from polluted water.


1994 ◽  
Vol 30 (9) ◽  
pp. 191-197 ◽  
Author(s):  
R. Leyva Ramos ◽  
A. Juarez Martinez ◽  
R. M. Guerrero Coronado

The adsorption isotherm of chromium (VI) on activated carbon was obtained in a batch adsorber. The experimental adsorption data were fitted reasonably well to the Freundlich isotherm. The effect of pH on the adsorption isotherm was investigated at pH values of 4, 6, 7, 8, 10 and 12. It was found that at pH < 6, Cr(VI) was adsorbed and reduced to Cr(III) by the catalytic action of the carbon and that at pH ≥ 12, Cr(VI) was not adsorbed on activated carbon. Maximum adsorption capacity was observed at pH 6 and the adsorption capacity was diminished about 17 times by increasing the pH from 6 to 10. The pH effect was attributed to the different complexes that Cr(VI) can form in aqueous solution. The adsorption isotherm was also affected by the temperature since the adsorption capacity was increased by raising the temperature from 25 to 40°C. It was concluded that Cr(VI) was adsorbed significantly on activated carbon at pH 6 and that the adsorption capacity was greatly dependent upon pH.


2013 ◽  
Vol 842 ◽  
pp. 187-191
Author(s):  
Guang Fu Xu ◽  
Zhao Xi Shen ◽  
Rui Xin Guo

As an agricultural waste available in large quantity in China, Orange peel was utilized as low-cost adsorbent to remove furadan from aqueous solution by adsorption. Pseudo-first-order, second-order models and intraparticle diffusion model were applied to analyze experimental data and thus elucidated the kinetic adsorption process. The high values of correlation coefficients showed the data conformed well to the pseudo-first-order rate kinetic model over the initial stage of the adsorption processes. The plots were not linear over the whole time range, implying that more than one process affected the adsorption: the first one representing surface adsorption at the beginning of the reaction and the second one was the intraparticle diffusion at the end of the reaction. The results in this study indicated that orange peel was an attractive candidate for removing furadan from the aqueous solution.


2011 ◽  
Vol 239-242 ◽  
pp. 781-785 ◽  
Author(s):  
Shuai Wang ◽  
Hong Zhong ◽  
Liu Yin Xia ◽  
Zhong Nan Wang ◽  
Qian Zhang

A novel polystyrene modified ethoxycarbonyl thiourea resin(PSETU) was synthesized by polymer grafting of aminated polystyrene and ethoxycarbonyl isothiocyanate. The adsorption capacities of PSETU follow the order: Au(III) > Cu(II) > Zn(II) > Ni(II) > Fe(III) > Ca(II) ≈ Mg(II). The adsorption capacity for Au(III) increases with the increase of contact time, temperature and initial concentration of Au(III). The adsorption data fit Boyd’s diffusion equation of liquid film, Langmuir adsorption isotherm and Freundlich adsorption isotherm. The maximum adsorption capacity of PSETU calculated by Langmuir isotherm equation is 3.485 mmol/g, and the separation factors of PSETU for Au(III)-base metal ions are above 380. According to XPS results, the functional atoms of PSETU coordinate with Au(III) during the adsorption process.


2018 ◽  
Vol 34 (3) ◽  
pp. 427-453 ◽  
Author(s):  
Kshitij Tewari ◽  
Gaurav Singhal ◽  
Raj Kumar Arya

Abstract In this review, the state of the art on the removal of malachite green dye from aqueous solution using adsorption technique is presented. The objective is to critically analyze different adsorbents available for malachite green dye removal. Hence, the available recent literature in the area is categorized according to the cost, feasibility, and availability of adsorbents. An extensive survey of the adsorbents, derived from various sources such as low cost biological materials, waste material from industry, agricultural waste, polymers, clays, nanomaterials, and magnetic materials, has been carried out. The review studies on different adsorption factors, such as pH, concentration, adsorbent dose, and temperature. The fitting of the adsorption data to various models, isotherms, and kinetic regimes is also reported.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aili Yang ◽  
Zhijun Wang ◽  
Yukuan Zhu

AbstractIn this work, we reported for the first time a novel magnetic composite graphene oxide/Fe3O4/glucose-COOH (GO/Fe3O4/GC) that was facilely prepared from glucose through the hydrothermal carbonization and further combination with graphene oxide (GO). The chemical and structural properties of the samples were investigated. By the batch uranium adsorption experiments, the magnetic composite GO/Fe3O4/GC exhibits an excellent adsorption performance and fast solid–liquid separation for uranium from aqueous solution. GO/Fe3O4/GC (the maximum adsorption capacity (Qm) was 390.70 mg g−1) exhibited excellent adsorption capacity and higher removal rate (> 99%) for U(VI) than those of glucose-COOH (GC) and magnetic GC (MGC). The effect of the coexisting ions, such as Na+, K+, Mg2+, Ca2+, and Al3+, on the U(VI) removal efficiency of GO/Fe3O4/GC was examined. The equilibrium sorption and sorption rate for the as-prepared adsorbents well fit the Langmuir model and pseudo second-order kinetic model, respectively. The thermodynamic parameters (ΔH0 = 11.57 kJ mol−1 and ΔG0 < 0) for GO/Fe3O4/GC indicate that the sorption process of U(VI) was exothermic and spontaneous. Thus, this research provides a facile strategy for the preparation of the magnetic composite with low cost, high efficiency and fast separation for the U(VI) removal from aqueous solution.


2013 ◽  
Vol 773 ◽  
pp. 889-892 ◽  
Author(s):  
Yuan Peng ◽  
Hong Yan Xiao ◽  
Xian Zhong Cheng ◽  
Hong Mei Chen

The use of low-cost and eco-friendly adsorbents has been investigated as an ideal alternative to the currentexpensive methods of removing arsenic from wastewater. Orange peel was collected from the local fields of orangetrees and converted into a low-cost adsorbent. The effects of solution pH, contact time, and concentration of orange peel have beenstudied. The maximum adsorption capacity calculated from the Langmuirisotherm model was 43.69 mg g-1,Based on the adsorption capacity, the pretreating orange peel was shown to be promising materials for adsorption removal ofarsenics from aqueous solutions.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Johnatan D. Castro-Castro ◽  
Iván F. Macías-Quiroga ◽  
Gloria I. Giraldo-Gómez ◽  
Nancy R. Sanabria-González

Clay minerals can be modified organically by a cationic surfactant resulting in materials known as organoclays. The organoclays have been used as adsorbents of most of the organic contaminants in the aqueous solution and oxyanions of the heavy metal. In this study, a Colombian bentonite was modified with hexadecyltrimethylammonium bromide to obtain an organobentonite, and its capacity to adsorb Cr(VI) oxyanions in the aqueous solution was evaluated. The effect of pH, stirring speed, adsorbent amount, contact time, and ionic strength were investigated at 25°C. Stirring speeds above 200 rpm, contact times greater than 120 min, and the addition of NaCl (0.1 to 2.0 mM) did not have a significant effect on Cr(VI) removal. The influence of the adsorbent amount and pH on Cr(VI) adsorption was studied by the response surface methodology (RSM) approach based on a complete factorial design 32. Results proved that the Cr(VI) adsorption follows a quadratic model with high values of coefficient of determination (R2 = 95.1% and adjusted R2 = 93.9%). The optimal conditions for removal of Cr(VI) from an aqueous solution of 50 mg/L were pH of 3.4 and 0.44 g amount of the adsorbent. The adsorption isotherm data were fitted to the Langmuir and Freundlich adsorption isotherm models, and the model parameters were evaluated. The maximum adsorption capacity of Cr(VI) onto organobentonite calculated from the Langmuir model equation was 10.04 ± 0.34 mg/g at 25°C. The results suggest that organobentonite is an effective adsorbent for Cr(VI) removal, with the advantage of being a low-cost material.


Sign in / Sign up

Export Citation Format

Share Document