Research of Reinforce Stress on the Pressure Structure of Submersible Vehicle

2014 ◽  
Vol 496-500 ◽  
pp. 590-593
Author(s):  
Guan Nan Chu ◽  
Qing Yong Zhang ◽  
Guo Chun Lu

In order to improve the load-carrying properties of pressure structure, a new method to improve the external bearing limit is put forward and residual stress is used. Based on finite element analysis, finite element models of cylinder pressure structure of submersible vehicle are established to produce hoop residual stress in the process of outward expansion. According to a lot of data of simulation experiments, the result indicates that hoop residual stress is compressive on the outer surface of the pipe and the hoop stress keeps tensile on the inside surface. This kind of stress distribution is helpful to the cylinder structure and can improve its bearing capacity of external pressure. Moreover, the rules of the residual stress are got. The influences of physical dimension, yield strength of material and the expansion rate to the stress distribution are analyzed. The measures to produce the stress distribution are also presented.

2014 ◽  
Vol 1082 ◽  
pp. 412-415
Author(s):  
Guo Chun Lu ◽  
Guan Nan Chu

In order to improve the ultimate capacity of pressure hull, a new method to improve the external bearing limit is put forward and residual stress is used. Based on the lame formula, the bilinear hardening model is considered to deduce the residual stress formula. Two influence parameters are analyzed by theoretical and numerical methods. The accordance of results shows that the accuracy of theoretical derivation can be verified by FEM. The 3D models with residual stress or not are built in ABAQUS. According to a lot of data of simulation experiments, the result indicates that the directional residual stress is useful, especially compressive on the outer surface of the pipe and the hoop stress keeps tensile on the inside surface. This kind of stress distribution is helpful to the cylinder structure and can improve its ultimate capacity of external pressure. Thus, the formula considering hardening material can guide the full plastic bulging to produce the desired stress distribution.


1994 ◽  
Vol 364 ◽  
Author(s):  
X.-L. Wang ◽  
S. Spooner ◽  
C. R. Hubbard ◽  
P. J. Maziasz ◽  
G. M. Goodwin ◽  
...  

AbstractNeutron diffraction was used to measure the residual stress distribution in an FeAl weld overlay on steel. It was found that the residual stresses accumulated during welding were essentially removed by the post-weld heat treatment that was applied to the specimen; most residual stresses in the specimen developed during cooling following the post-weld heat treatment. The experimental data were compared with a plasto-elastic finite element analysis. While some disagreement exists in absolute strain values, there is satisfactory agreement in strain spatial distribution between the experimental data and the finite element analysis.


2011 ◽  
Vol 314-316 ◽  
pp. 428-431 ◽  
Author(s):  
Hui Du ◽  
Dong Po Wang ◽  
Chun Xiu Liu ◽  
Hai Zhang

To simulate preheating and postweld heat treatment of Q345 steel pipe welding, the finite element model was established. The welding process was simulated by method of the ANSYS element birth and death technique. In this paper, to obtain the distribution of the temperature field and stress field in different situations, preheating processes with two different values of temperature and postweld heat treatment process were simulated respectively. The results show that preheating can homogenize residual stress distribution of the weldment and decrease the residual stress. The heat treatment reduces the residual stress in inner and outer walls by 24% and 70% respectively and the stress distribution is more even and stress concentration is reduced.


1993 ◽  
Vol 60 (2) ◽  
pp. 300-309 ◽  
Author(s):  
T. Nishimura

New equations for calculating residual stress distribution are derived from the theory of elasticity for tubes. The initial distribution of the stresses including the shearing stress is computed from longitudinal distributions of residual stresses measured by the X-ray methods at the surface after removal of successive concentric layers of material. For example, the residual stresses of a steel tube quenched in water were measured by the X-ray diffraction method. The new method was also applied to a short tube with hypothetical residual stress distribution. An alternative finite element analysis was made for a verification. The residual stresses computed by finite element modeling agreed well with the hypothetical residual stresses measured. This shows that good results can be expected from the new method. The equations can also be used for bars by simple modification.


2017 ◽  
Vol 5 (2) ◽  
pp. 244-249 ◽  
Author(s):  
Mohamed I. El-Anwar ◽  
Eman A. El-Taftazany ◽  
Hamdy A. Hamed ◽  
Mohamed A. Abd ElHay

AIM: This study aimed to compare the stresses generated by using two or four root form dental implants supporting mandibular overdentures that were retained with ball and locator attachments.METHODS: Under ANSYS environment, four 3D finite element models were prepared. These models simulated complete overdentures supported by two or four implants with either ball or locator attachments as a connection mechanism. The models’ components were created by CAD/CAM package then were imported to ANSYS. Load of 100 N was applied at the right premolar/molar region vertically and at an oblique angle of 110° from lingual direction.RESULTS: Within the conditions of this research, in all cases, it was found that cortical and cancellous bone regions were the least to be stressed. Also, the ball attachment produced higher stresses.CONCLUSION: Caps deformation and stresses are negligible in cases of using locator attachment in comparison to ball attachments. This may indicate longer lifetime and less repair/maintenance operations in implant overdentures retained by locator attachments. Although the study revealed that bone was insensitive to a number of implants or attachment type, it may be recommended to use two implants in the canine region than using four, where the locator attachments were found to be better.


Author(s):  
Daniel Sommerville ◽  
Matthew Walter

Two dimensional (2-D) axisymmetric finite element models (FEMs) are often used as a simplification to modeling cylindrical nozzles that intersect a cylindrical pressure vessel. However, an axisymmetric model has the effect of representing the vessel as a spherical shell rather than a cylindrical shell. Previous work has been done to determine 2-D axisymmetric to three dimensional (3-D) stress correction factors (CFs) for the total stress at the nozzle blend radius to account for this inconsistency. The present paper expands on that work to investigate the effects of the 2-D axisymmetric modeling simplification on the through wall stress distribution at the nozzle corner. The through-wall stress distribution is necessary for some fracture mechanics analyses performed for corner cracked nozzles and for using the simplified elastic-plastic analysis given in NB-3228.5. A simplified method is proposed which can be used to obtain a nozzle specific correction factor, rather than a bounding correction factor, that can be applied to 2-D finite element analysis stress results to correct for the inaccuracy introduced by modeling the intersection as an axisymmetric section.


Sign in / Sign up

Export Citation Format

Share Document