Discussions of Influence of some Factors on New Vehicle Absorption Cold Source

2014 ◽  
Vol 532 ◽  
pp. 479-482
Author(s):  
Hai Jun Qiao ◽  
Jia Nan Wu

Small absorption cold source for car air conditioners differs from the compression cold source characteristics of the cold source, such as vehicle shaking can cause problems such as pollution of coolant water. Based on computational fluid dynamics (CFD) method, spray process in a new small cold source of lithium bromide absorption chiller was simulated by using the k-epsilon model and volume of fraction (VOF) model, which can capture the free surface of the two phase of liquid and gas, and the effects of nozzle profile and car bumping are analyzed, providing a theoretical basis for the application of a small absorption cold source for automotive.

Author(s):  
Ashraf Ibrahim ◽  
Mark Wendel ◽  
David Felde ◽  
Bernard Riemer

In this work, we present computational fluid dynamics (CFD) simulations of helium bubble formation and detachment at a submerged needle in stagnant and co-flowing mercury. Since mercury is opaque, visualization of internal gas bubbles was done with proton radiography (pRad) at the Los Alamos Neutron Science Center (LANSCE2). The acoustic waves emitted at the time of detachment and during subsequent oscillations of the bubble were recorded with a microphone. The Volume of Fluid (VOF) model was used to simulate the unsteady two-phase flow of gas injection in mercury. The VOF model is validated by comparing detailed bubble sizes and shapes at various stages of the bubble growth and detachment, with the experimental measurements at 1.66 mg/min helium gas flow rate and different mercury velocities. The experimental and computational results show a two-stage bubble formation in stagnant mercury. The first stage involves growing bubble around the needle, and the second follows as the buoyancy overcomes wall adhesion. The comparison of predicted and measured bubble sizes and shapes at various stages of the bubble growth and detachment is in good agreement.


Author(s):  
Silvia Araujo Daza ◽  
Urbano Montañez Villamizar

Abstract This work presents the methodology and results of the optimization of the internals (Inlet distributor, oil and water collectors) of a 20,000 BPD (0.037 m3/s) gun-barrel tank starting from an existing design. Computational fluid dynamics (CFD) was applied to simulate and evaluate the performance of various internal configurations. These simulations were performed to determine the best configuration to ensure efficient separation of the oil-water mixture and oil with a low BSW content < 2% at the outlet. The simulations were carried out using the commercial software ANSYS Fluent under the two-phase flow VOF model and k-ε realizable turbulence model. Further CFD simulations were performed to evaluate the behavior of the gun barrel tank under different operating conditions (Different inlet flow rate) and to determine the maximum operation flow which allows obtaining the crude-oil with a maximum BSW content of 0.5%. From the simulation results, an operating curve (operating flow vs retention time) was constructed. This information allows, in practice, to identify the inlet flow rate based on the desired content of BSW in the separated oil.


Author(s):  
Cláudio P. Fonte ◽  
Ricardo J. Santos ◽  
Madalena M. Dias ◽  
José Carlos B. Lopes

Mixing in RIM is made mainly by advective mechanisms, rather than diffusion. In this paper, the advective mechanisms that enable reducing the mixing scales down to the values required for the complete chemical reaction of the two monomers inside the RIM mixing chamber are identified and studied. From Computational Fluid Dynamics (CFD) simulations of non-diffusive two-phase flow using the Volume-of-Fluid (VOF) model, a linear scale of segregation is determined as a measure of the degree of mixing and the effect of the Reynolds number is studied.


2016 ◽  
Vol 16 (6) ◽  
pp. 1700-1709 ◽  
Author(s):  
Yazan Taamneh

Computational fluid dynamics (CFD) simulations were performed for experiments carried out with two identical pyramid-shaped solar stills. One was filled with Jordanian zeolite-seawater and the second was filled with seawater only. This work is focused on CFD analysis validation with experimental data conducted using a model of phase change interaction (evaporation-condensation model) inside the solar still. A volume-of-fluid (VOF) model was used to simulate the inter phase change through evaporation-condensation between zeolite-water and water vapor inside the two solar stills. The effect of the volume fraction of the zeolite particles (0 ≤ ϕ ≤ 0.05) on the heat and distillate yield inside the solar still was investigated. Based on the CFD simulation results, the hourly quantity of freshwater showed a good agreement with the corresponding experimental data. The present study has established the utility of using the VOF two phase flow model to provide a reasonable solution to the complicated inter phase mass transfer in a solar still.


Author(s):  
Antonin Povolny ◽  
Martin Cuhra

In order to ensure safety of nuclear installations, thermohydraulics has developed many ways how to predict the behavior of coolant in a heated boiling channel. Accuracy of these predictions can be improved using three-dimensional Computational Fluid Dynamics (CFD) method, which is based on first principles of fluid mechanics. Even though when using CFD, there is a struggle between the accuracy and low computation costs, in many cases CFD can provide feasible improvement of accuracy compared to more traditional approaches. In this research, the focus is set on channel boiling problems, especially those associated with boiling transitions. The phenomenon of critical heat flux (CHF) is investigated using two-phase CFD computation and is compared to experimental data. There is also comparison with other computation methods. When experiment provides some set of data, CFD calculation provides description of the whole flow behavior that provides significantly more information and is of great value during the design process when it gives the understanding of undergoing effects. Besides CHF, general ability of CFD to predict changes in boiling patterns in two-phase channel boiling flows is discussed.


2012 ◽  
Vol 472-475 ◽  
pp. 1605-1609
Author(s):  
Bin Jiang ◽  
Zhong Tao Li ◽  
Lu Hong Zhang

The ripple tray is a sieve tray without downcomers, in which the liquid contacts with the upward gas counter-currently. The hydrodynamics performance in ripple tray columns was investigated with the computational fluid dynamics (CFD) method. Various superficial gas velocity and liquid loads were simulated for the tray with cylindrical cross sections using the Euler-Euler method. The modeling results were validated by comparing the calculated liquid height on the ripple tray with the experimental values. The developed CFD model is found to be able to predict the two phase flow patterns in ripple tray columns and provide useful information for further design of ripple tray.


2011 ◽  
Vol 1 (4) ◽  
Author(s):  
Rafael Santos ◽  
Masahiro Kawaji

AbstractComputational fluid dynamics (CFD) is an important tool for development of microfluidic systems based on gasliquid two-phase flow. The formation of Taylor slugs at microchannel T-junctions has been studied both experimentally and numerically, however discrepancies still exist because of difficulties in correctly representing experimental conditions and uncertainties in the physics controlling slug flow, such as contact line and velocity slip. In this paper detailed methods and results are described for the study of Santos and Kawaji [1] on the comparison of experimental results and numerical modeling. The system studied consisted of a rectangular microchannel Tjunction nominally 100 μm in hydraulic diameter, used to generate Taylor slugs from air-water perpendicular flow. The effect of flow rates on parameters such as slug length, velocity slip, void fraction and two-phase frictional pressure drop were studied. Numerical simulation was performed using FLUENT volume-of-fluid (VOF) model. It is proposed in this paper that this microfluidic problem be taken up by researchers in the field as a benchmark case to test other numeric codes in comparison to FLUENT on the prediction of micro-scale multiphase flow, and also to model in more detail the experimental system described to obtain greater accuracy in prediction of microfluidic slug formation.


2011 ◽  
Vol 101-102 ◽  
pp. 966-969
Author(s):  
Wei Hua Hu

Over the last decade, considering the influence of the viscous free water surface, the numerical simulation of the flow around the hull is one of the focuses in ship research. Currently, the precision of numerical simulation results need to be enhanced. In this paper, Computational Fluid Dynamics (CFD) method is used, for a real high-speed ship model, to simulate the flow around the hull and to calculate the total hull resistance with FLUENT software. The Volume of Fraction (VOF) method of two-phase fluid is used to deal with the free surface tracking. The results of resistance are compared with the ship model experimental results. It is shown that the total resistance results calculated accord with the experimental results well, and the numerical method can simulate the profile of the ship wave-making.


Author(s):  
Adam Robinson ◽  
Carol Eastwick ◽  
Herve´ Morvan

Within an aero-engine bearing chamber oil is provided to components to lubricate and cool. This oil must be efficiently removed (scavenged) from the chamber to ensure it does not overheat and degrade. Bearing chambers typically contain a sump section with an exit pipe leading to a scavenge pump. In this paper a simplified geometry of a sump section, here simply made of a radial off-take port on a walled inclined plane, is analysed computationally. This paper follows on work presented within GT2008-50634. In the previous paper it was shown that simple gravity draining from a static head of liquid cold be modelled accurately, for what was akin to a deep sump situation fond in integrated gear boxes for example. The work within this paper will show that the draining of flow perpendicular to a moving film can be modelled. This situation is similar to the arrangements found in transmission bearing chambers. The case modelled is of a walled gravity driven film running down a plane with a circular off-take port, this replicates experimental work similar to that reported in GT2008-50632. The commercial computational fluid dynamics (CFD) code, Fluent 6 [1] has been employed for modelling, sing the Volume of Fluid (VOF) approach of Hirt and Nichols [2, 3] to capture the physics of both the film motion and the two phase flow in the scavenge pipe system. Surface tension [4] and a sharpening algorithm [5] are used to complement the representation of the free surface and associated effects. This initial CFD investigation is supported and validated with experimental work, which is only depicted briefly here as it is mainly sued to support the CFD methodology. The case has been modelled in full as well as with the use of a symmetry plane running down the centre of the plane parallel to the channel walls. This paper includes details of the meshing methodology, the boundary conditions sued, which will be shown to be of critical importance to accurate modelling, and the modelling assumptions. Finally, insight into the flow patterns observed for the cases modelled are summarised. The paper further reinforces that CFD is a promising approach to analysing bearing chamber scavenge flows although it can still be relatively costly.


2008 ◽  
Vol 10 (1) ◽  
pp. 22-27 ◽  
Author(s):  
Roch Plewik ◽  
Piotr Synowiec ◽  
Janusz Wójcik

Two-phase CFD simulation of the monodyspersed suspension hydraulic behaviour in the tank apparatus from a circulatory pipe The hydrodynamics in fluidized-bed crystallizers is studied by CFD method. The simulations were performed by a commercial packet of computational fluid dynamics Fluent 6.x. For the one-phase modelling (15), a standard k-ε model was applied. In the case of the two-phase flows the Eulerian multi-phase model with a standard k-ε method, aided by the k-ε dispersed model for viscosity, has been used respectively. The collected data put a new light on the suspension flow behaviour in the annular zone of the fluidised bed crystallizer. From the presented here CFD simulations, it clearly issues that the real hydraulic conditions in the fluidised bed crystallizers are far from the ideal ones.


Sign in / Sign up

Export Citation Format

Share Document