Effects of Laser Cladding of Silicon Carbides Particles and Iron Based Powder

2014 ◽  
Vol 548-549 ◽  
pp. 289-293 ◽  
Author(s):  
Mum Wai Yip ◽  
Stuart Barnes ◽  
Ahmed A.D. Sarhan

The objective of this study was to develop clad layer by producing a Silicon Carbide (SiC) particle reinforced Metal Matrix Composite (MMC) using the iron based alloys (P25) as the matrix material. Direct laser cladding was carried out by melting the clad materials and depositing them onto a mild steel substrate. A two gravity feed system was used in this study which contained of SiC particles and iron based powder as separate powders. The intention was to melt the iron based powder and incorporate the SiC particles. Decomposition of SiC particles was observed and only a few SiC particles were found in the clad matrix. Microhardness results showed that laser clad layer had higher hardness which more than 1000 HV and hence potentially better wear resistance that base material. However, most of the SiC had evaporated which created porosity in the melt pool due to the decomposition of SiC and the resultant gas which was trapped in clad layer did not have enough time to escape from the melt pool due to the rapid solidification. Therefore, a blown powder technique is recommended for overcome this problem.

2013 ◽  
Vol 748 ◽  
pp. 269-272 ◽  
Author(s):  
Mum Wai Yip ◽  
Stuart Barnes

The objective of this research was to develop a new form of clad layer by producing a Silicon Carbide (SiC) particle reinforce Metal Matrix Composite (MMC) using the iron based alloys as the matrix material. A 1.2kW continuous wave CO2 laser was used in this research. A gravity feed system was used with one powder feed which contained different percentages of SiC particles and iron based powder. Experimental results showed that the decomposition of SiC particles was observed and only a few SiC particles were found in the clad matrix. High micro hardness values were found in the SiC clad which were in excess of 1000 HV. However, most of the SiC were evaporated which created porosity in the melt pool. Therefore, blown powder technique is recommended for overcome this problem.


Author(s):  
Mum Wai Yip ◽  
Stuart Barnes ◽  
Ahmed Aly Diaa Mohmmed Sarhan

The objective of this research was to deposit a silicon carbide (SiC) reinforced layer of P25 (iron-based matrix material) on substrate material surface using CO2 laser. Two experiments using CO2 laser were carried out in this research. In the first experiment set, a gravity feed system was used with one powder feed containing different percentages of SiC particles and iron-based powder. In the second experiment set, preplaced powder was placed on substrate material surface. According to the experimental results, only few SiC particles were found in the clad matrix in the first experiment, and no SiC particles were found in the second experiment. A high microhardness value was noted in the SiC clad (above 1000 HV) in the first experiment compared to the second experiment with hardness values ranging from 200 HV to 700 HV. This was due to the high precipitation of carbide particles in the clad material during the first experiment. A comparison of the two different experiments signifies that the first one was the best because a more uniform layer with less porosity was produced.


2016 ◽  
Vol 254 ◽  
pp. 290-295
Author(s):  
Iosif Hulka ◽  
Ion Dragoş Uţu ◽  
Viorel Aurel Şerban ◽  
Alexandru Pascu ◽  
Ionut Claudiu Roată

Laser cladding process is used to obtain protective coatings using as heat source a laser. This melts the substrate and the feedstock material to create a protective coating and provides a strong metallurgical bond with minimal dilution of the base material and reduced heat affected zone. In the present study a commercial NiCrSiFeB composition was deposited by laser cladding process using different parameters onto the surface of a steel substrate. The obtained coatings were investigated in terms of microstructure, hardness and wear behavior. The experimental results revealed that the laser power had a considerable influence on the wear resistance of NiCrSiFeB coatings.


2008 ◽  
Vol 373-374 ◽  
pp. 375-378 ◽  
Author(s):  
Bai Yang Lou ◽  
Bing Xu ◽  
Y.B. Zhou ◽  
W.J. Bai ◽  
H.L. Du

The high-energy laser melts the cladding materials which coagulate onto the surface of the base materials. The laser cladding coatings are produced mainly in two methods: powder feeding and prefabricating. The grain-strengthening composite coatings could be formed more easily by prefabricating method than by powder feeding method. In this paper, Ni/SiC ceramic composite coating on carbon steel (45 steel) was made by prefabricating method. The microstructure and wear-resistance of Ni/SiC cladding coating on the 45 steel were studied using scanning electronic microscope (SEM) and wear test. The results showed that the microstructure of cladding coatings included bonding layer, thermo-affected layer and heat-affected layer after laser cladding. The microstructure of cladding coating was mainly of dendrite and cell-like crystals. The resultant multilayered coating had excellent adherence with the base steel. The addition of SiC particles into cladding coatings significantly reinforced the microhardness of laser cladding coating. Compared with Ni60A cladding coating, Ni60A/SiC cladding coating had high microhardness, which was attributed to not only the dispersion intensification effect of the SiC particle, but also by the new complicated phases. During laser cladding process, SiC particles may decompose and dissolve into the coating and result in solid solution strengthening effect which increases the microhardness of the composite coatings. The base material and Ni-based laser cladding coatings with and without SiC were tested to assess the wear-resistance property. The test results demonstrated that the laser cladding coatings had better wear resistance than the base material. Furthermore, the laser cladding coating with SiC particles had higher wear-resistance than the coating without SiC.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2745
Author(s):  
Paweł Kołodziejczak ◽  
Dariusz Golański ◽  
Tomasz Chmielewski ◽  
Marcin Chmielewski

The addition of Rhenium up to 6% to Ni-Cr alloys can dramatically improve the corrosion and oxide resistance of deposited coatings at high operating temperatures. Ni-Cr+Re layers can be successfully produced using conventional powder metallurgy, high rate solidification (HRS), or magnetron sputtering methods. However, in industrial applications, high-performance deposition methods are needed, e.g., laser cladding. Laser cladding has several advantages, e.g., metallurgical bonding, narrow heat-affected zone (HAZ), low dilution, and slight thermal damage to the substrate. In this paper, a powder Ni-Cr composite with 1% (wt.) of Rhenium was produced, then deposited onto a steel substrate (16Mo3) by laser cladding to assess the micro and macrostructural properties of the obtained layers. Besides the macro and microscopic observations, scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) microanalysis of the deposit and HAZ as well as microhardness measurements have been conducted. The microstructure observations revealed four subareas of HAZ gradually changing from the fusion line towards the base material. Maximum hardness occurred in the HAZ, mainly in areas closer to the clad/substrate interface, reaching up to 350–400 HV. No sudden changes in the composition of the deposit and the area of fusion line were observed.


1988 ◽  
Vol 129 ◽  
Author(s):  
K. Mohammed Jasim ◽  
D.R.F. West

ABSTRACTAn investigation is reported of the laser surface.cladding of an alloy of nominal composition Ni-4Fe-30Cr-6A1 (wt%) on a mild steel substrate, using a continuous powder feed of the elemental powder mixture into the melt pool. The effect of laser processing conditions has been investigated in relation to clad dimensions, bonding, dilution level, hardness and microstructural features. A 2 kW CW C02laser was used working at 1.6 kW power and 2.5 mm beam diameter at different traverse speeds ranging from 1.8 to 25 mm/s: clad layers were produced in the range of 0.15-3 mm thick. Fine microstructures were obtained (corresponding to the rapid solidification rates). Good metallurgical bonding was observed between the clad layer and substrate within the range of specific energies, 50-130 J/mm2. For all the conditions studied, no cracking was observed in single tracks; low specific energy conditions gave little porosity.


2019 ◽  
Vol 8 (6) ◽  
pp. 20190068 ◽  
Author(s):  
Aleksander Lisiecki ◽  
Dawid Ślizak ◽  
Adrian Kukofka

Author(s):  
Kevin C. Schoeffel ◽  
Yung C. Shin

Blown-powder laser cladding is an efficient method for enhancing the surface properties of engineering components while preserving the properties of the base material. High power direct diode lasers (HPDDLs) offer wide beams with nearly uniform intensity distribution, allowing the deposition of wide clad tracks with flatter profiles than those produced with a Gaussian beam. In this work, a 4.0 kW HPDDL is used to perform blown-powder cladding on AISI 4140 and AISI 5150 steel shafts. The first part of the experiments concerns two-layer circumferential tracks created from two commonly used hardfacing alloys: Stellite 6 (Co-Cr alloy) and Nistelle 625 (Ni-Cr alloy). The effects of laser power and powder feed rate on the clad geometry are assessed. Increasing the powder feed rate and holding constant all other parameters decreases the track width-to-thickness aspect ratio. All tracks exhibit dendrite microstructures that are characteristic of powder-based clad tracks. The tracks exhibit no cracks or porosity. Energy dispersive X-ray (EDX) analysis reveals dilution of five percent or less between the clad and substrate materials. The second part of the experiments concerns overlapping of single-layer clad tracks in a continuous helical pattern on the substrate to form a layer that covers a large area. Clad layer thickness and inter-track porosity are measured to determine the optimum degree of overlap for producing a high-quality clad layer. The thickness of the resulting Stellite 6 and Nistelle 625 clad layers decreases as the overlap percentage decreases. No inter-track, interfacial, or bulk pores are present for any tests, comprising overlap percentages of 50% and lower.


2011 ◽  
Vol 264-265 ◽  
pp. 1433-1438 ◽  
Author(s):  
S. Dyuti ◽  
S. Mridha ◽  
S.K. Shaha

In this study an attempt has been made to produce titanium-aluminium dispersed hard nitride layer on mild steel surfaces by preplacement of 50 % Ti and 50 % Al powder mixture and then melting with TIG torch under nitrogen environment. Parameter such as heat input of the torch was varied between 540, 608 and 675 J/mm and its effect on the resolidified melt pool was studied. Glazing under all energy inputs produced more than 1mm thick resolidified clad layer. The microstructural analysis revealed the clad layer with dispersion of dendrites of Ti-Al nitrides and Ti- Al intermetallic in ferrite matrix. The concentration of dendrites were found to be maximum near the surface and decreased at deeper depths.The maximum hardness of the modified surface layer was found to be 900 Hv compared to180 Hv of the mild steel substrate.


Sign in / Sign up

Export Citation Format

Share Document