The Utilization of Rice Husks Powder as an Antioxidant in Asphalt Binder

2014 ◽  
Vol 567 ◽  
pp. 539-544 ◽  
Author(s):  
Mohammed Hadi Nahi ◽  
Ibrahim B. Kamaruddin ◽  
Napiah Madzlan

Aging is one of the main contributors for asphalt failure. Oxidation aging is the main cause of long-term deterioration in asphalt pavements as a pavement ages, oxidation stiffens a pavement, making it more susceptible to failure from load and thermal stresses. Slowing a pavement’s oxidative aging would maintain its elastic properties and delay aging problems. There is no performance enhancer in widespread use, acting as an antioxidant that slows the oxidative aging of asphalt binder. The main objective of this research is to investigate the feasibility of using biomass powder derived from rice husks as an antioxidant additive to control the asphalt age hardening. The waste of rice husks was dried at 40°C for 9–11 days. The dried materials was grounded, and sieved to get fine powder. To evaluate the performance of the antioxidant, samples have to be aged according to SUPERPAVE standards (RTFOT and PAV) and physical, chemical, and rheological properties have to be analyzed. The preliminary results of penetration test softening point test shows that adding 4% of rice husks’ powder to 80/100 binder didn’t change the grade of the binder.

Author(s):  
Shin-Che Huang ◽  
J. Claine Petersen ◽  
Raymond Robertson ◽  
Jan F. Branthaver

An experiment involving neat asphalts AAD-1, ABD, and their mixtures with two different grades of hydrated lime was conducted to investigate the effect of lime on the long-term aging characteristics of asphalt binders. Rheological properties of unaged and aged asphalt-lime mixtures were measured with a dynamic shear rheometer at 25°C (77°F) and 60°C (140°F). The addition of hydrated lime to one asphalt (AAD-1) effectively reduced oxidative age hardening. In addition, the phase angle reached the same value as aging time reached after approximately 800 h at 60°C in the pressure-aging vessel for AAD-1 and its mixtures with lime. After 800 h of aging, the phase angle was greater for the limetreated asphalt than for the untreated asphalt, and it continued to decrease at a slower rate. This result indicates that the addition of lime to this asphalt increases the initial stiffness of the binder, but, more importantly, it preserves elasticity during long-term oxidative aging. Thus, for this asphalt, at a level of oxidation typical of pavements, limetreated and untreated asphalts arrived at the same viscosity with time, but the lime-treated asphalt had better viscous flow properties than the untreated asphalt. It could then be predicted that the aged, lime-treated asphalt would be more resistant to fatigue cracking. The other asphalt tested (ABD) did not exhibit substantial effects of lime on the rate of oxidative age hardening. This highly compatible, low-asphaltene asphalt is not typical of most paving asphalts. Because hydrated lime has been shown to reduce oxidative age hardening both in the laboratory and during the first few years in the pavement, adding hydrated lime should extend the useful lifetime of most asphalt pavements.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4176 ◽  
Author(s):  
Yi Zhang ◽  
Xueyan Liu ◽  
Panos Apostolidis ◽  
Wolfgang Gard ◽  
Martin van de Ven ◽  
...  

As bitumen oxidizes, material stiffening and embrittlement occur, and bitumen eventually cracks. The use of anti-oxidants, such as lignin, could be used to delay oxidative aging and to extend the lifetime of asphalt pavements. In this study, the chemical and rheological effect of lignin on bitumen was evaluated by using a single dosage organsolv lignin (10 wt.% dosage). A pressure aging vessel (PAV) was used to simulate the long-term aging process after performing the standard short-term aging procedure, and the lignin-modified bituminous binders were characterized by an environmental scanning electron microscope (ESEM), Fourier-transform infrared (FTIR) spectroscopy, and a dynamic shear rheometer (DSR). From the ESEM results, the uniform microstructure was observed, indicating that the addition of lignin did not affect the worm structure of bitumen. Based on the FTIR test results, lignin-modified bitumen showed that a lower number of carbonyl and sulfoxide compounds were generated after aging than for neat bitumen. Based on the linear amplitude sweep (LAS) results, the addition of lignin slightly reduced the fatigue life of bitumen. From the frequency sweep results, it showed that lignin in bitumen acts as a modifier since the physical interaction between lignin and bitumen predominantly affects the material rheology. Overall, lignin could be a promising anti-oxidant due to its economic and environmental benefits.


2019 ◽  
Vol 8 (3) ◽  
pp. 2310-2313

Longitudinal cracking is one of the major structural distresses of asphalt pavement. These cracks appear on the pavement along the direction of moving traffic. This study makes an attempt to predict the extent of longitudinal cracking based on three parameters which are: asphalt binder content, traffic load repetitions and asphalt stiffness modulus. For the study, the data has been used from Long Term Pavement Performance (LTPP) database. Linear Least Square (LLS) regression method is employed to model the observed trends between the longitudinal cracking and the three parameters. The results of the analyses has shown that longitudinal cracking vary linearly with respect to each parameter. It is observed that (i) longitudinal cracking decreases linearly with increase in percentage asphalt binder content in asphalt concrete (ii) longitudinal cracking increases linearly with increasing traffic load repetitions and (iii) longitudinal cracking decreases linearly with increase in stiffness modulus of asphalt concrete.


Author(s):  
Christopher H. Domke ◽  
Meng Liu ◽  
Richard R. Davison ◽  
Jerry A. Bullin ◽  
Charles J. Glover

An essential element of understanding and predicting long-term asphalt binder performance is understanding asphalt oxidative aging and its effect on physical properties. High-temperature, high-pressure laboratory kinetic studies, pressure aging vessel (PAV) aging, and aging at pavement conditions are compared. The consequences of running the PAV at conditions far from road conditions are examined. An aging model previously reported in the literature was used to describe the data. Important asphalt aging parameters include the pressure reaction order (α), activation energy ( E), initial jump in carbonyl content, and hardening susceptibility. All of these parameters are asphalt dependent. PAV tests were performed on asphalts for which kinetic data were available, and the results were compared with the kinetic model and with results obtained after 135 days of aging at 333 K (140°F) air. The high temperature and pressure used in the PAV test sometimes results in serious errors in the performance ranking of asphalts of different E and α. Nevertheless, the test often ranks asphalts remarkably well because of fortuitous cancellation of several effects of pressure and temperature and the dampening effects of diffusion. Diffusion slows the oxidation rates, and asphalts with higher rates harden at the surface faster, increasing the diffusion resistance and slowing the observed bulk rate. The relative hardening of different asphalts is affected by the choice of PAV time, temperature, and pressure.


Author(s):  
Farhad Yousefi Rad ◽  
Michael D. Elwardany ◽  
Cassie Castorena ◽  
Y. Richard Kim

Oxidative age hardening in asphalt binder leads to embrittlement. Embrittled asphalt is prone to fatigue and thermal cracking. Therefore, the ability to predict asphalt binder oxidative age hardening within a pavement throughout its service life could inform improved pavement material selection, design, and maintenance practices. Studying the evolution of oxidative aging requires the use of key properties to track oxidation levels, termed aging index properties (AIPs) here. The objective of this study is to identify suitable rheological and chemical AIPs to track oxidation levels in asphalt materials. A wide range of laboratory and field aged materials were evaluated in this study. A range of chemical AIPs determined by Fourier transform infrared spectroscopy (FTIR) absorbance peaks and areas were evaluated based on their correlation with laboratory aging duration. Rheological AIPs were evaluated based on the strength of their relationship to the chemical changes induced by oxidation. The rheological AIPs evaluated included the dynamic shear modulus, zero shear viscosity, Glover-Rowe parameter, and crossover modulus. The chemical AIP evaluation that most strongly correlated with laboratory aging duration is the carbonyl plus the sulfoxide absorbance peaks. The results indicate that both the dynamic shear modulus and Glover-Rowe parameter constitute rheological AIPs that relate directly to the chemical changes induced by oxidation.


2021 ◽  
Vol 304 ◽  
pp. 124687
Author(s):  
Yanlong Liang ◽  
John T. Harvey ◽  
David Jones ◽  
Rongzong Wu

2018 ◽  
Vol 8 (7) ◽  
pp. 1194 ◽  
Author(s):  
Touqeer Shoukat ◽  
Pyeong Jun Yoo

The pavement structure tends to shrink under low temperature conditions and cracks will appear upon crossing threshold binder stiffness. Decreasing the binder viscosity at such low temperatures, by introducing additional oil fraction (aromatics and saturates) in asphalt colloidal systems, may result in improved resistance to thermal cracking. A single multi-grade engine oil (5W30) was used in this study to analyze the rheological properties imparted to binders. Rotational Viscosity (RV) test revealed that after Rolling Thin Film Oven (RTFO) aging, fresh oil and waste oil have a similar effect on decreasing the viscosity of binder and construction temperatures, reducing them by 5~8 °C. Fourier Transform Infrared Spectroscopy (FTIR) test results showed an abrupt increase of carbonyl concertation when fresh engine oil was used for rejuvenation while waste engine oil was less susceptible to oxidative aging. Dynamic analysis of modified binders proved that engine oil has better thermal cracking resistance but relaxation ability of binders and rutting resistance was impaired. Filtered waste engine oil resulted in a 35% decrement in the stiffness of binder compared to virgin asphalt after short term aging but upper Performance Grade (PG) was compromised by 1~3 °C with 2.5% oil inclusion. Unfiltered waste engine oil proved to have the least overall performance compared to fresh and filtered waste engine oil.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1554 ◽  
Author(s):  
Pan Pan ◽  
Yi Kuang ◽  
Xiaodi Hu ◽  
Xiao Zhang

In this study, the aged asphalt binder and mixture were laboratory prepared through short-term ageing testing and long-term ageing testing. Firstly, the effect of rejuvenator on physical properties of aged asphalt binders was investigated. In addition, a series of laboratory tests were performed to evaluate the influence of ageing and rejuvenator content on the mechanical properties, durability and dynamic characteristics of asphalt mixtures. Physical test results of asphalt binder testified that rejuvenator used can efficiently recover the aged asphalt binder. However, the effect of ageing and rejuvenator content exhibits different trends depending on the physical property tests conducted. Moreover, artificially aged asphalt mixture with rejuvenator has better ability to resist moisture damage and ravelling. In addition, the ITSR value is more suitable to evaluate the moisture susceptibility for asphalt recycling. Although rejuvenator improves the thermal cracking resistance and fatigue property of aged asphalt mixture, rejuvenated mixture shows greater modulus and inferior ability to resist reflective cracking than the unaged mixture. Moreover, rejuvenated mixture shows less dependence on frequency at high temperature regions and stronger dependence at low temperature regions compared to unaged and long-term aged mixtures.


1969 ◽  
Vol 42 (4) ◽  
pp. 1095-1121 ◽  
Author(s):  
C. S. Kim

Abstract Zhurkov's molecular kinetic concept of failure for hard solid materials was extended for application to rubber systems which undergo oxidative degradation during long-term atmospheric exposure. In an effort to analyze the chemical and mechanical effects separately, the dependency of the life-time of the uniaxially stressed rubber was expressed in terms of (1) chemical effects involving the primary chemical bonds in the effective chains, and (2) mechanical effects involving the network structure of the rubber.


Sign in / Sign up

Export Citation Format

Share Document