Distribution of Stress on Stone Column-Reinforced Soft Soil under Cylindrical Storage Tank

2014 ◽  
Vol 567 ◽  
pp. 699-704 ◽  
Author(s):  
Kousik Deb ◽  
Amit Kumar Das

Structures with circular foundation (chimney, silo, oil tank) constructed on compressible soft soil, often have to opt for ground improvement like stone columns before construction. In this paper, the stress distribution on stone column-reinforced ground under cylindrical storage tank has been presented. Actual foundation soil reinforced with stone column is assumed as composite ground of soil and hollow cylindrical stone rings keeping the area ratio constant to carry the analysis in axi-symmetric condition. The soft soil, stone columns and granular fill are idealized using mechanical elements. The floor slab of the storage tank is assumed to be flexible enough to satisfy the theory of thin plate. Governing differential equations are derived to determine the vertical settlement and solved with finite difference technique. Contact stress at ground level is calculated from vertical settlement. It is observed that soft soil experiences heavy settlement and contact stress when the tank is full despite of low spacing to diameter ratio (S/dc = 3) and reasonable modular ratio (Ec/Es = 20). It is also observed that stress acting on edge stone column is lower as compared to the stress acting on center stone column even under uniformly loaded condition.

2018 ◽  
Vol 239 ◽  
pp. 05015 ◽  
Author(s):  
Kwa Sally Fahmi ◽  
Mohammed Fattah ◽  
Alena Shestakova

This paper deals with using the stone column as a technique for the enhancement of the soft ground. The key goal of utilizing stone column is to decrease settlement and to increment the soil bearing ability, as well as decreasing the consolidation period. Nowadays, the current method concerns with various kinds of soil granular and cohesive. It is clear that the delicate soils (cohesive) possess a good settlement because of the disability of the ground to control the sidelong development and protruding of the stone sections. Moreover, the ways of utilization of the geosynthetic materials for encasement of the stone sections are other perfect ways to enhance the implementation, the quality, and firmness of stone segments. The present work investigates the behavior of the soft soil reinforced with ordinary and encased stone columns with geogrid under cyclic load. Six model tests were carried out on a soil with shear strength of about 15 kPa for both ordinary stone columns (OSC) and geogrid encased stone columns (ESC). For validating the enhanced method of utilizing stone columns, finite element model using the software PLAXIS 3D and field load exams had been applied. It was concluded that the models subjected to cyclic loading under the rate of loading 10 mm/sec reached the failure level faster than models tested under the rate of loading 5 mm/sec. The results of the finite element analyses of settlement compared with the records of settlement after the laboratory load tests seem to yield reasonably comparable values up to 50% of the design load. Afterwards, the recorded settlements show up to 60% higher values in compare with the results of the finite element analyses. This observation can be attributed to the occurrence of plastic failures under increasing load after an initial elastic response.


The use of stone columns in improving the bearing capacity of soft soil is well researched, but the understanding of settlement requires further studies. This paper presents the results of a series of laboratory tests carried out to study the settlement behavior of soft soil bed reinforced with ordinary stone column (OSC) and Geogrid encased stone columns (GESC). Kaolin was used as the soft soil and stones of size from 2.5 to 10 mm were used as column material. The stone columns of four different diameters were installed, by the method of replacement, into the soil having undrained shear strength of 22.5 kPa. The OSC and GESC test beds were subjected to pressure of 250 and 300 kPa. Each pressure was sustained for 24 hours and the settlement of the composite soil with time was noted. It is found that Geogrid encased stone columns have small settlement than the corresponding ordinary stone columns. The SRR (settlement reduction ratio) being a measure of ground improvement, is found increasing with the area replacement ratio. Further, at a particular sustained pressure SRR is found more for GESC than the corresponding value for OSC.


2018 ◽  
Vol 7 (2) ◽  
pp. 263
Author(s):  
Maryam Gaber ◽  
Anuar Kasa ◽  
Norinah Abdul Rahman ◽  
Jamal Alsharef

This article presents a comparative study of the behaviour of clayey soil reinforcements using stone column ground improvement by means of numerical analyses. Two-dimensional finite element analyses with commercially available software, PLAXIS, were performed on end-bearing stone columns using 15-noded triangular elements to investigate the impact of the modelling type on the stress concentration ratio and failure mechanism of an improved foundation system. Consolidation analyses were conducted throughout the study using Mohr-Coulomb’s criterion. The computed values of the stress concentration ratios were compared for different key parameters, including the diameters of stone columns, c/c spacing of columns, friction angle of stone column material, and undrained cohesion of soft soil. The major conclusions of this study were that the stone column in the unit cell model shared between 2.5 to 3.14 times more loads than the surrounding soil, whilst in the plane strain model it shared between 1.7 to 2.9 times more loads. The use of plane strain approach to model the stone column gave a more comprehensive representation of the stress distribution and load transfer between the soil and columns, in addition to being a better method than the unit cell concept to evaluate the failure mode in this system.


2021 ◽  
Vol 23 (08) ◽  
pp. 538-548
Author(s):  
Mandeep Singh ◽  
◽  
Dr Prashant Garg ◽  

In the building industry, ground improvement techniques based on stone column are widely employed. It is a very successful approach for enhancing the engineering characteristics of soil in all aspects, as well as reducing the settling issue in poor-grounded soils including silt, clay, silty sand, and organic soil. The performance of stone columns, is determined by the confining pressure provided by the surrounding soils. Engineering constructions built on thick layers of soft soil strata face issues such as limited bearing capacity, excessive total and differential settlement, lateral spreading, and so on. To address such issues, many ground improvement techniques are available. In exceptionally soft soils, the lateral confining pressure may be inadequate, resulting in column bulging failure. Individual stone column encasement improves lateral resistance to bulging by adding restricting pressure. This research focuses on the geotechnical aspects of building on closed landfill sites. A total of 33 models were tested in a geotechnical engineering laboratory on virgin former landfill soil and stone column with and without encasement in this current study. The increased diameter, length and L/D ratio of the column has demonstrated that the load capacity has increased and soil settling has decreased. When an unreinforced stone column has been installed, the ultimate bearing capacity of landfill soil is increased by 75-112.50 per cent and 87.50-176 per cent respectively, for 10mm and 20mm diameter stone column. Furthermore, when a fully reinforced stone column has been installed, it had increased by 156.25-212.50 per cent and 200-298 per cent for 10mm and 20mm diameters respectively. The stiffness of soil is increased by the stone column, which contributes to increase in the load capacity. The geogrid layer confines an aggregate, which contribute to enhance shear stiffness and bearing capacity.


2018 ◽  
Vol 162 ◽  
pp. 01013 ◽  
Author(s):  
Shaymaa Tareq Kadhim ◽  
Ziad Bashar Fouad

Use of stone column technique to improve soft foundation soils under roadway embankments has proven to increase the bearing capacity and reduce the potential settlement. The potential contribution of stone columns to the stability of roadway embankments against general (i.e. deep-seated) failure needs to be thoroughly investigated. Therefore, a two-dimensional finite difference model implemented by FLAC/SLOPE 7.0 software, was employed in this study to assess the stability of a roadway embankment fill built on a soft soil deposit improved by stone column technique. The stability factor of safety was obtained numerically under both short-term and long-term conditions with the presence of water table. Two methods were adopted to convert the three-dimensional model into plane strain condition: column wall and equivalent improved ground methods. The effect of various parameters was studied to evaluate their influence on the factor of safety against embankment instability. For instance, the column diameter, columns’ spacing, soft soil properties for short-term and long-term conditions, and the height and friction angle of the embankment fill. The results of this study are developed in several design charts.


2021 ◽  
Vol 16 ◽  
pp. 1-8
Author(s):  
Danish Ahmed ◽  
Siti Noor Linda Bt Taib ◽  
Tahar Ayadat ◽  
Alsidqi Hasan

In the last few decades, it has been observed that raft foundations are very commonly used as a foundation solution for moderate to high rise structures either by resting on stone columns or on piles in soft soils. It is believed that, combining stone columns and piles in one foundation system is the more suitable foundation for medium rise structures. The combined foundation system provides a superior and more economical alternative to pile, and a more attractive alternative to stone columns in respect to ground improvement. This paper presents the review of existing studies reported in the literature in the last two decades about the behaviour of stone columns under raft foundations and piled raft foundation in soft soil, notably the failure mechanism and the bearing capacity. Also, a limited work from the literature concerning the performance of combined (pile/stone columns) foundation system in soft soil is comprised. Furthermore, very extensive ongoing research work regarding the investigation and study on the performance of combined (pile/stone columns) foundation system in soft soils is discussed. The main goals and methodology to study the performance of the combined (pile/stone columns) foundation systems in soft soil are also addressed.


1995 ◽  
Vol 32 (1) ◽  
pp. 106-121 ◽  
Author(s):  
Vinod K. Garga ◽  
Luciano V. Medeiros

The design of the industrial port of Sepetiba, 50 km south of Rio de Janeiro, Brazil, required a detailed evaluation of the underlying soft soil deposits. Initially, on the basis of laboratory tests, it was proposed to remove approximately 3.7 × 106 m3 of the very soft deposits in the stockpile area by dredging and substitute with hydraulic sand fill. Subsequently, in view of the cost of such a measure, a large program of field investigations was initiated to study the in situ characteristics of the soft clay to evaluate whether replacement of this material and (or) ground improvement was necessary. As part of this investigation, two large identically instrumented test fills (test fills B and D), each 65 m2 in plan and 5 m high, with 3:1 slopes were constructed. Test fill B was constructed over natural ground, whereas the subsoil beneath test fill D was treated with stone columns. The instrumentation for each test fill consisted of piezometers, deep settlement plates, surface settlement plates, and inclinometers. This paper provides a description of the field investigations, observations on installation of stone columns, analysis of instrumentation, a comparison of the behaviour of the two test fills, and a discussion on load tests on individual stone columns. Key words : case history, embankment, ground improvement, instrumentation, soft clay, stone columns.


Author(s):  
Erol Guler ◽  
Cihan Cengiz ◽  
Oliver Detert

Significant investments are being made towards enhancing the reach of the railway infrastructure due to the vast economic benefits it brings. An inevitable consequence of the expansion of the rail network is the soft soil conditions encountered in the alignment. Geosynthetic encased columns (GEC) is a proven ground improvement technology which can be adapted as soil remediation technique for such conditions. In this paper, first an introduction to the concept of GECs will be given. Then the recent advances in the academic research on the GECs will be elaborated. As it is known, earthquakes are one of the most devastating disasters and certainly also have a major effect on transportation infrastructure. In this paper results of shaking table tests to compare ordinary stone columns and GECs behavior under earthquake loading conditions will also be presented. The brief recap of the state of the art on the geosynthetic encased columns including their earthquake behavior will be followed by case studies on three major projects where the site conditions and project requirements will be discussed. The significant benefits of geosynthetic encased columns in relation to project requirements will also be elaborated.


2021 ◽  
Vol 318 ◽  
pp. 01008
Author(s):  
Mahdi O. Karkush ◽  
Amer G. Jihad ◽  
Karrar A. Jawad ◽  
Mustafa S. Ali ◽  
Bilal J. Noman

The response of floating stone columns of different lengths to diameter ratio (L/D = 0, 2, 4, 6, 8, and 10) ratios exposed to earthquake excitations is well modeled in this paper. Such stone column behavior is essential in the case of lateral displacement under an earthquake through the soft clay soil. ABAQUS software was used to simulate the behavior of stone columns in soft clayey soil using an axisymmetric finite element model. The behavior of stone column material has been modeled with a Drucker-Prager model. The soft soil material was modeled by the Mohr-Coulomb failure criterion assuming an elastic-perfectly plastic behavior. The floating stone columns were subjected to the El Centro earthquake, which had a magnitude of 7.1 and a peak ground acceleration of 3.50 m/s2. The surface displacement, velocity, and acceleration in soft clayey enhanced by floating stone columns are also smaller than in natural soft clay. The findings of this research revealed that under the influence of earthquake waves, lateral displacement varies with stone columns of various lengths.


Sign in / Sign up

Export Citation Format

Share Document