Thermal Characterization of Lithium Polymer Battery Module for Electric Vehicle Application

2014 ◽  
Vol 575 ◽  
pp. 620-623 ◽  
Author(s):  
Teja Maruvada ◽  
Lalit Patidar ◽  
Meet Patel

Modern day electric vehicles and hybrid vehicles which run completely/partially on electric power typically use lithium polymer cells to build the battery module. The high energy density of the lithium polymer cells makes them desirable compared to others. These battery modules get heated up as high currents pass through the cells, which are arranged in stacks. Thermal management of cells is one of the main factors to be considered in the battery module design. A properly designed thermal management system is crucial to prevent overheating and uneven heating across a large battery module of lithium polymer cells, which can lead to degradation, mismatch in cell capacity and thermal runaway. A Three dimensional transient thermal analysis of cell stacks is performed in ANSYS workbench under the required operating conditions and a temperature profile of each and every point is obtained. An experimental setup is designed and built to simulate both the thermal and electrical conditions of the battery module in order to determine the thermal performance of the cell stacks. The simulation results are validated with the experimentally obtained results.

2021 ◽  
Vol 198 ◽  
pp. 117503 ◽  
Author(s):  
Mohsen Akbarzadeh ◽  
Theodoros Kalogiannis ◽  
Joris Jaguemont ◽  
Lu Jin ◽  
Hamidreza Behi ◽  
...  

Author(s):  
Kemal Cagatay Selvi

In this study, static stress-deformation analyzes (in terms of material strengths) were presented comparatively through a FEM-based simulation of the subsoiler and paraplow legs designed in a three-dimensional CAD environment. In general, both soil tillage implements with high energy requirements are being used to remove the soil compaction problem on agricultural land. The operating conditions of the implements were simulated using a FEM-based simulation program (Ansys-16). The results of static analysis obtained from the Finite Element Method (FEM) were evaluated on some different materials used in the shank design of both implements and the results were given comparatively. According to the analysis results, the maximum equivalent stress was in paraplow shank foot 122 MPa which is used C-60 material and the maximum vertical dis-placement is 0,00014 mm in the position of shank foot of subsoiler


2021 ◽  
Vol 22 (20) ◽  
pp. 11041
Author(s):  
Yajing Yan ◽  
Yanxu Chen ◽  
Yongyan Li ◽  
Xiaoyu Wu ◽  
Chao Jin ◽  
...  

By virtue of the high theoretical capacity of Si, Si-related materials have been developed as promising anode candidates for high-energy-density batteries. During repeated charge/discharge cycling, however, severe volumetric variation induces the pulverization and peeling of active components, causing rapid capacity decay and even development stagnation in high-capacity batteries. In this study, the Si/Fe2O3-anchored rGO framework was prepared by introducing ball milling into a melt spinning and dealloying process. As the Li-ion battery (LIB) anode, it presents a high reversible capacity of 1744.5 mAh g−1 at 200 mA g−1 after 200 cycles and 889.4 mAh g−1 at 5 A g−1 after 500 cycles. The outstanding electrochemical performance is due to the three-dimensional cross-linked porous framework with a high specific surface area, which is helpful to the transmission of ions and electrons. Moreover, with the cooperation of rGO, the volume expansion of Si is effectively alleviated, thus improving cycling stability. The work provides insights for the design and preparation of Si-based materials for high-performance LIB applications.


Author(s):  
Marie DUQUESNE ◽  
Elena PALOMO DEL BARRIO ◽  
Alexandre GODIN

Xylitol is an organic, non-toxic, biosourced phase change material with high potential for seasonal thermal energy storage material. It has a high energy density, a high and stable undercooling allowing storing solar energy at ambient temperature thus, reducing thermal losses and the risk of spontaneous nucleation (i.e., the risk of losing the stored energy). When the energy is needed, the discharge triggering of the storage system (i.e., Nucleation triggering of highly viscous undercooled Xylitol) is very difficult as well as reaching a sufficient power delivery (i.e., the control of the subsequent crystal growth rates). Both are the mains locks for the use of Xylitol in seasonal energy storage. Different techniques to crystallize highly undercooled Xylitol have hence been considered. It has been proven that nucleation triggering of highly undercooled Xylitol using an air lift reactor would allow reaching performances matching with building applications (i.e., at medium temperatures, below 100 °C). The advantages of this technique compared to other existing techniques to activate the crystallization are discussed. The mechanisms triggering the nucleation are investigated. The air bubble generation, transportation of nucleation sites and subsequent crystallization are discussed to improve the air injection operating conditions.


Author(s):  
Mohammad Kazemi Nasrabadi ◽  
Amir Ebrahimi-Moghadam ◽  
Mohammad Hosein Ahmadi ◽  
Ravinder Kumar ◽  
Narjes Nabipour

Due to low working temperature, high energy density and low pollution, proton exchange fuel cells have been investigated under different operating conditions in different applications. Using platinum catalysts in methanol fuel cells leads to increasing the cost of this kind of fuel cell which is considered as a barrier to the commercialism of this technology. For this reason, a lot of efforts have been made to reduce the loading of the catalyst required on different supports. In this study, carbon black (CB) and carbon nanotubes (CNT) have been used as catalyst supports of the fuel cell as well as using the double-metal combination of platinum-ruthenium (PtRu) as anode electrode catalyst and platinum (Pt) as cathode electrode catalyst. The performance of these two types of electro-catalyst in the oxidation reaction of methanol has been compared based on electrochemical tests. Results showed that the carbon nanotubes increase the performance of the micro-fuel cell by 37% at maximum power density, compared to the carbon black. Based on thee-electrode tests of chronoamperometry and voltammetry, it was found that the oxidation onset potential of methanol for CNT has been around 20% less than CB, leading to the kinetic improvement of the oxidation reaction. The current density of methanol oxidation reaction increased up to 62% in CNT sample compared to CB supported one, therefore the active electrochemical surface area of the catalyst has been increased up to 90% by using CNT compared to CB which shows the significant rise of the electrocatalytic activity in CNT supported catalyst. Moreover, the resistance of the CNT supported sample to poisonous intermediate species has been found 3% more than CB supported one. According to the chronoamperometry test results, it was concluded that the performance and sustainability of the CNT electro-catalyst show remarkable improvement compared to CB electro-catalyst in the long term.


2021 ◽  
Vol 9 ◽  
Author(s):  
Zhuolin Tang ◽  
Mengming Yuan ◽  
Huali Zhu ◽  
Guang Zeng ◽  
Jun Liu ◽  
...  

Nowadays, Li–CO2 batteries have attracted enormous interests due to their high energy density for integrated energy storage and conversion devices, superiorities of capturing and converting CO2. Nevertheless, the actual application of Li–CO2 batteries is hindered attributed to excessive overpotential and poor lifespan. In the past decades, catalysts have been employed in the Li–CO2 batteries and been demonstrated to reduce the decomposition potential of the as-formed Li2CO3 during charge process with high efficiency. However, as a representative of promising catalysts, the high costs of noble metals limit the further development, which gives rise to the exploration of catalysts with high efficiency and low cost. In this work, we prepared a K+ doped MnO2 nanowires networks with three-dimensional interconnections (3D KMO NWs) catalyst through a simple hydrothermal method. The interconnected 3D nanowires network catalysts could accelerate the Li ions diffusion, CO2 transfer and the decomposition of discharge products Li2CO3. It is found that high content of K+ doping can promote the diffusion of ions, electrons and CO2 in the MnO2 air cathode, and promote the octahedral effect of MnO6, stabilize the structure of MnO2 hosts, and improve the catalytic activity of CO2. Therefore, it shows a high total discharge capacity of 9,043 mAh g−1, a low overpotential of 1.25 V, and a longer cycle performance.


2020 ◽  
Vol 165 ◽  
pp. 03002
Author(s):  
Li Jing ◽  
Che Ying ◽  
Jin Meishan ◽  
Zhai Yannan ◽  
Ding Changhong

Fiber optic super continuous spectrum laser technology is a new technology developed in recent years. It takes into account the advantages of good alignment of laser source, high energy density and wide wavelength range of ordinary white light source, which can not only accurately remote sense distant target, but also obtain hyperspectral information of distant target. Super continuous spectrum of laser radar is a kind of remote sensing monitoring instrument, it can obtain three-dimensional spectral information of the target, and can be accurately detected in the night of distant high spectral information, the all-weather, three-dimensional spectrum detection method with the traditional passive remote sensing compared with single/multiband laser radar technology has incomparable advantages. Based on the development trend of lidar abroad, the development status of super-continuous spectrum lidar in China and the problems in remote sensing detection of oil spill, this paper introduces the feasibility of using super-continuous spectrum laser to monitor oil spill in the sea, which lays a foundation for further research.


2018 ◽  
Vol 6 (4) ◽  
pp. 1802-1808 ◽  
Author(s):  
Ke Li ◽  
Yanshan Huang ◽  
Jingjing Liu ◽  
Mansoor Sarfraz ◽  
Phillips O. Agboola ◽  
...  

Three-dimensional graphene frameworks enable the development of stretchable asymmetric supercapacitors with a record high energy density of 77.8 W h kg−1, and also excellent stretchability and superior cycling stability.


Sign in / Sign up

Export Citation Format

Share Document