scholarly journals Investigation of the Structural Deformation Behaviour of the Subsoiler and Paraplow Tines by Means of Finitie Element Method

Author(s):  
Kemal Cagatay Selvi

In this study, static stress-deformation analyzes (in terms of material strengths) were presented comparatively through a FEM-based simulation of the subsoiler and paraplow legs designed in a three-dimensional CAD environment. In general, both soil tillage implements with high energy requirements are being used to remove the soil compaction problem on agricultural land. The operating conditions of the implements were simulated using a FEM-based simulation program (Ansys-16). The results of static analysis obtained from the Finite Element Method (FEM) were evaluated on some different materials used in the shank design of both implements and the results were given comparatively. According to the analysis results, the maximum equivalent stress was in paraplow shank foot 122 MPa which is used C-60 material and the maximum vertical dis-placement is 0,00014 mm in the position of shank foot of subsoiler

2013 ◽  
Vol 648 ◽  
pp. 170-173
Author(s):  
Lu Lu ◽  
Zhao Xu Wang

In this paper, the simulation of the piercing process is performed by the three dimensional finite element method in Diescher’s mill. After a short description of the problem the numerical model of the process is described. The simulated results visualize dynamic evolution of equivalent stress, especially inside the work-piece. The non-uniform distribution of stress on the internal and external surface of the work-piece is a distinct characteristic of processing tube piercing. And it is the basic data for improving tool and design, predicting, damage and controlling the micro-structural evolution of processing tube piercing.


2012 ◽  
Vol 215-216 ◽  
pp. 239-243
Author(s):  
Ming Hui Zhang ◽  
Di Zhang ◽  
Yong Hui Xie

As the main bearing part in a turbine blade, the root carries most of the loads of the whole blade. The improvement of the root structure can be used to enhance the operation reliability of steam turbine. The research on design optimization for double-T root and rim of a turbine blade was conducted by three-dimensional finite element method. Based on the APDL (ANSYS parametric design language), a multi-variable parametric model of the double-T root and rim was established. Twelve characteristic geometrical variables of the root-rim were optimized to minimize the maximum equivalent stress. The optimal structure of the double-T root-rim is obtained through the optimization. Compared with the original structure, the equivalent stress level of the root and rim has a significant reduction. Specifically, the maximum equivalent stress of root and rim reduces by 14.25% and 13.59%, respectively.


Author(s):  
Yamina Chelahi Chikr ◽  
Benali Boutabout ◽  
Ali Merdji ◽  
Kheira Bouzouina

The purpose of this study was to develop a new three-dimensional model of an osseointegrated molar dental prosthesis and to carry out finite element analysis to evaluate stress distributions and intensities in the bone and in the components of dental prosthesis under three loads (corono-apical, distal-mesial and buccal-lingual) were applied to the top of the occlusal face of the prosthesis crown. The interfacial stresses were also determined inside and outside of the threading when the dental prosthesis system was subjected to one of three masticatory loads. All materials used in the models were considered to be isotropic, homogeneous and linearly elastic. The elastic properties, loads and constraints used in the model were taken from published data. In this study, the stress concentration occurred around the threaded dental implant neck. Thus, this area should be preserved clinically in order to maintain the bone–implant interface structurally and functionally.


Author(s):  
Ken Suzuki ◽  
Hideo Miura

Three-dimensional (3D) integration of silicon microelectronic devices improves the electronic functions of devices and minimizes packaging density drastically. A through-silicon via (TSV) structure is indispensable for maximizing the density of interconnections among the stacked silicon chips. However, since the TSV structure is surrounded by silicon, and there is large mismatch in materials properties between metallic materials used for the TSV structure and silicon, thermal stress is essentially generated around the TSV structure during their fabrication process and operating conditions. Recently, electroplated copper thin films have started to be applied to the interconnection material in the TSV structure because of its low electric resistivity and high thermal conductivity. However, the electrical resistivity of the electroplated copper thin films surrounded by SiO2 was found to vary drastically comparing with those of the conventional bulk material. This was because that the electroplated copper thin films consisted of grains with low crystallinity and grain boundaries, in other words, abnormally high defect density. Thus, both the crystallinity and electrical properties of the TSV structure was investigated quantitatively by changing their electroplating conditions and thermal history after the electroplating. It was observed that many voids and hillocks appeared in the TSV structures depending on the electroplating conditions. It was also found that the stress-induced migration occurred after the high temperature annealing which was introduced for improving the crystallinity of the electroplated films. Therefore, it is very important to evaluate the crystallographic quality of the electroplated copper thin films after electroplating to assure both the mechanical and electrical properties of the films.


2019 ◽  
Vol 141 (3) ◽  
Author(s):  
Aleš Chvála ◽  
Robert Szobolovszký ◽  
Jaroslav Kováč ◽  
Martin Florovič ◽  
Juraj Marek ◽  
...  

In this paper, several methods suitable for real time on-chip temperature measurements of power AlGaN/GaN-based high-electron mobility transistor (HEMT) grown on a SiC substrate are presented. The measurement of temperature distribution on HEMT surface using Raman spectroscopy is presented. The second approach utilizes electrical I–V characteristics of the Schottky diode neighboring to the heat source of the active transistor under different dissipated power for temperature measurement. These methods are further verified by measurements with microthermistors. The features and limitations of the proposed methods are discussed. The thermal parameters of materials used in the device are extracted from the temperature distribution in the structure with the support of three-dimensional thermal simulation of the device. Thermal analysis of the multifinger power HEMT is performed. The effects of the structure design and fabrication processes from semiconductor layers, metallization, and packaging up to cooling solutions are investigated. The influence of individual layer properties on the thermal performance of different HEMT structures under different operating conditions is presented. The results show that the proposed experimental methods supported by simulation have a potential for the design, analysis, and thermal management of HEMT.


2014 ◽  
Vol 575 ◽  
pp. 620-623 ◽  
Author(s):  
Teja Maruvada ◽  
Lalit Patidar ◽  
Meet Patel

Modern day electric vehicles and hybrid vehicles which run completely/partially on electric power typically use lithium polymer cells to build the battery module. The high energy density of the lithium polymer cells makes them desirable compared to others. These battery modules get heated up as high currents pass through the cells, which are arranged in stacks. Thermal management of cells is one of the main factors to be considered in the battery module design. A properly designed thermal management system is crucial to prevent overheating and uneven heating across a large battery module of lithium polymer cells, which can lead to degradation, mismatch in cell capacity and thermal runaway. A Three dimensional transient thermal analysis of cell stacks is performed in ANSYS workbench under the required operating conditions and a temperature profile of each and every point is obtained. An experimental setup is designed and built to simulate both the thermal and electrical conditions of the battery module in order to determine the thermal performance of the cell stacks. The simulation results are validated with the experimentally obtained results.


2016 ◽  
Vol 19 (2) ◽  
pp. 93-100
Author(s):  
Lalita El Milla

Scaffolds is three dimensional structure that serves as a framework for bone growth. Natural materials are often used in synthesis of bone tissue engineering scaffolds with respect to compliance with the content of the human body. Among the materials used to make scafffold was hydroxyapatite, alginate and chitosan. Hydroxyapatite powder obtained by mixing phosphoric acid and calcium hydroxide, alginate powders extracted from brown algae and chitosan powder acetylated from crab. The purpose of this study was to examine the functional groups of hydroxyapatite, alginate and chitosan. The method used in this study was laboratory experimental using Fourier Transform Infrared (FTIR) spectroscopy for hydroxyapatite, alginate and chitosan powders. The results indicated the presence of functional groups PO43-, O-H and CO32- in hydroxyapatite. In alginate there were O-H, C=O, COOH and C-O-C functional groups, whereas in chitosan there were O-H, N-H, C=O, C-N, and C-O-C. It was concluded that the third material containing functional groups as found in humans that correspond to the scaffolds material in bone tissue engineering.


1990 ◽  
Vol 18 (4) ◽  
pp. 216-235 ◽  
Author(s):  
J. De Eskinazi ◽  
K. Ishihara ◽  
H. Volk ◽  
T. C. Warholic

Abstract The paper describes the intention of the authors to determine whether it is possible to predict relative belt edge endurance for radial passenger car tires using the finite element method. Three groups of tires with different belt edge configurations were tested on a fleet test in an attempt to validate predictions from the finite element results. A two-dimensional, axisymmetric finite element analysis was first used to determine if the results from such an analysis, with emphasis on the shear deformations between the belts, could be used to predict a relative ranking for belt edge endurance. It is shown that such an analysis can lead to erroneous conclusions. A three-dimensional analysis in which tires are modeled under free rotation and static vertical loading was performed next. This approach resulted in an improvement in the quality of the correlations. The differences in the predicted values of various stress analysis parameters for the three belt edge configurations are studied and their implication on predicting belt edge endurance is discussed.


2012 ◽  
Vol 9 (1) ◽  
pp. 94-97
Author(s):  
Yu.A. Itkulova

In the present work creeping three-dimensional flows of a viscous liquid in a cylindrical tube and a channel of variable cross-section are studied. A qualitative triangulation of the surface of a cylindrical tube, a smoothed and experimental channel of a variable cross section is constructed. The problem is solved numerically using boundary element method in several modifications for a periodic and non-periodic flows. The obtained numerical results are compared with the analytical solution for the Poiseuille flow.


Sign in / Sign up

Export Citation Format

Share Document