Wind Load Analysis of Large Temporary Stand with Variable Upwind Structure

2014 ◽  
Vol 578-579 ◽  
pp. 606-614 ◽  
Author(s):  
Lin He ◽  
Xiao Xu Zou ◽  
Da Bo Xin

Shadowed by temporary exhibition cloth and other non-structural enclosure structures, the wind loading area of temporary stand increase dramatically, thus, temporary stand is easily to be overturned by a wild storm. The surface wind pressure of temporary stand accompanied with cover is presented in this paper by CFD numerical method. The method to identify the wind load on the surface of space truss temporary stand is also proposed with the identified pressure coefficient. The method proposed in this paper is of great use to improve the security of space truss temporary stand.

2012 ◽  
Vol 256-259 ◽  
pp. 788-791
Author(s):  
Zhi Xiang Yin ◽  
Yu Zhang

Open ended cantilevered roof is different from enclosed roof, because its change of wind pressure distribution is complex, and the wind directions have great influence on it. Up to now, for the characteristics of the structure are very complicated, there is no appropriate wind load model can be used in design, especially under typhoon, a specific wind field. So it is necessary to study the characteristics of wind load on open ended cantilevered roofs of typhoon. Using FLUENT and Computational Fluid Dynamics technology, based on the conventional, Tianpu’s and Shiyuan’s turbulence intensity of the typhoon scenario, a numerical simulation of wind flow around a large-span cantilevered roof was carried out. Analyzed different wind angles of the wind pressure distribution regularities on large-span cantilevered roof. The paper determined the distribution of the surface wind pressure coefficient for the cantilevered roofs, as well as the wind-sensitive parts of structures.


2018 ◽  
Vol 881 ◽  
pp. 132-141
Author(s):  
Oktaviani Tri Handayani ◽  
M. Despriodi Syaher ◽  
Inggar Septhia Irawati

This paper presents the results of a comparison study of the internal forces applied to the structure due to wind load determined based on SNI 1727: 2013 that is inputted manually and automatically using ASCE 7-10 wind load feature in SAP2000. The wind load reviewed in this study is the wind load that calculated by following the Directional Procedure stated in SNI 1727:2013. The study shows that the wind load calculated based on SNI 1727:2013 when the internal pressure coefficient GCpi is defined as 0.18 is 12% higher than the wind load calculated automatically by applying ASCE 7-10 wind load feature provided by SAP2000 when the wind parameters are assigned based on SNI 1727:2013.


2010 ◽  
Vol 163-167 ◽  
pp. 4280-4285
Author(s):  
Di Wu ◽  
Ying Sun ◽  
Yue Wu

Taking Harbin west railway station as the researching object, the wind load distribution as well as its effects, which are widely used in practice, is investigated. First, wind pressure distribution on a rigid model is measured simultaneously in a wind tunnel. Some special characteristics of the measured wind pressure, especially its fluctuating component, are discussed. Then the fluctuating wind pressure field is reconstructed based on the synchronous multi-pressure scanning technique of wind tunnel tests and the proper orthogonal decomposition (POD) technique. The influence of lower RC structure on wind-induced vibration is investigated using non-linear time-history analysis. At last, a new method is introduced to obtain equivalent static wind load (ESWL) that reproduce all largest load effects at the same time. With the synthetic application of above methods, the problems such as: complex time and spatial distribution of fluctuating wind; multi-mode vibration of wind-induced response; multiple equivalent objectives for ESWL, can be solved efficiently.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Yunfeng Zou ◽  
Fanrong Xue ◽  
Xuhui He ◽  
Chenzhi Cai ◽  
Shouke Li

Wind tunnel tests were carried out to measure the wind pressure of a 200 m high natural-draught cooling tower. An analysis of the distribution characteristics of external pressure was then conducted to determine the pressure coefficients Cp(θ, z) in a given wind profile. Finally, the effect on the response of the shell and the buckling safety of the shell, applying the simplified height-constant pressure coefficient Cp(θ) and the realistic pressure Cp(θ, z), was determined. Taking the wind load specified in the code as an example, the influence of the distribution of external pressure on the wind-induced response was further analyzed. The results indicate that the pressure distribution varies with not only the height z but also the circumferential angle θ, and the wind load of both ends of the tower is significantly greater than that of its middle. Moreover, the wind-induced static responses of the tower under the action of the realistic pressure distribution Cp(θ, z) and the simplified approach Cp(θ) are basically consistent, because the wind load distribution is more important than its magnitude for the wind-induced response of cooling tower, and the wind-induced response of the cooling tower is dominated by the local shell deformation.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Xinpeng Liu ◽  
Zhitao Yan ◽  
Zhengliang Li ◽  
Junfan Chen ◽  
Jingbo Liu

The effects of Reynolds number (Re) and surface roughness on the wind pressure coefficient on a MAN type dry gas tank were analyzed in detail by wind tunnel tests. A wind load calculation model was then established, which is suitable for the wind resistant design of the gas tanks. The test results revealed that in the range of 7 × 105 < Re < 1.0 × 106 (supercritical regimes), the drag coefficient (Cd) and wind pressure coefficient remained constant, consistent with 2D cylinders in a uniform flow. However, in common with 2D cylinder flows, the surface roughness with the spacing ratio (λ) greater than 0.9 had a significant effect on the wind pressures coefficient. The minimum pressure coefficient (Cpmin) sharply increased from −2.3 to −0.65 with increasing surface roughness. The corresponding angle for the minimum pressure coefficient θmin was in between 140°and 90°, which was in a gradual decreasing trend with the increase in surface roughness of the model. The calculation method of the wind pressure coefficient with vary surface roughness was proposed, based on which, the calculation results were in good agreement with the test data.


2013 ◽  
Vol 639-640 ◽  
pp. 485-488 ◽  
Author(s):  
Yao Xiong

One of the critical loads in engineering design is wind load, especially for high-rise structure or multi-story structure. In order to forecast the distribution of wind effects on structure, how to accurately predict the building surface wind pressure distribution is very important. Using the wind tunnel model test and numerical simulation calculation methods, the surface wind load on the mega-frame structure were comparatively analyzed and researched in this paper. The results show that combined the realized к-ε model with the standard wall function will not only satisfy the mega-frame structure surface wind pressure value requirement, but also provide complete wind filed around, which could provide meaningful information for further research on wind load.


2008 ◽  
Vol 400-402 ◽  
pp. 935-940 ◽  
Author(s):  
Ying Ge Wang ◽  
Zheng Nong Li ◽  
Bo Gong ◽  
Qiu Sheng Li

Heliostat is the key part of Solar Tower power station, which requires extremely high accuracy in use. But it’s sensitive to gust because of its light structure, so effect of wind load should be taken into account in design. Since structure of heliostat is unusual and different from common ones, experimental investigation on rigid heliostat model using technology of surface pressure mensuration to test 3-dimensional wind loads in wind tunnel was conducted. The paper illustrates distribution and characteristics of reflector’s mean and fluctuating wind pressure while wind direction angle varied from 0° to 180° and vertical angle varied from 0° to 90°. Moreover, a finite element model was constructed to perform calculation on wind-induced dynamic response. The results show that the wind load power spectral change rulers are influenced by longitudinal wind turbulence and vortex and are related with Strouhal number; the fluctuating wind pressures between face and back mainly appear positive correlation, and the correlation coefficients at longitudinal wind direction are smaller than those at lateral direction; the fluctuating wind pressures preferably agree with Gaussian distribution at smaller vertical angle and wind direction angle. The wind-induced response and its spectrums reveal that: when vertical angle is small, the background responsive values of reflector’s different parts are approximately similar; in addition, multi-phased resonant response occurring at the bottom. With the increase of , airflow separates at the near side and reunites at the other, as produces vortex which enhances dynamic response at the upper part.


2021 ◽  
Vol 11 (15) ◽  
pp. 7121
Author(s):  
Shouke Li ◽  
Feipeng Xiao ◽  
Yunfeng Zou ◽  
Shouying Li ◽  
Shucheng Yang ◽  
...  

Wind tunnel tests are carried out for the Commonwealth Advisory Aeronautical Research Council (CAARC) high-rise building with a scale of 1:400 in exposure categories D. The distribution law of extreme pressure coefficients under different conditions is studied. Probability distribution fitting is performed on the measured area-averaged extreme pressure coefficients. The general extreme value (GEV) distribution is preferred for probability distribution fitting of extreme pressure coefficients. From the comparison between the area-averaged coefficients and the value from GB50009-2012, it is indicated that the wind load coefficients from GB50009-2012 may be non-conservative for the CAARC building. The area reduction effect on the extreme wind pressure is smaller than that on the mean wind pressure from the code. The recommended formula of the area reduction factor for the extreme pressure coefficient is proposed in this study. It is found that the mean and the coefficient of variation (COV) for the directionality factors are 0.85 and 0.04, respectively, when the orientation of the building is given. If the uniform distribution is given for the building’s orientation, the mean value of the directionality factors is 0.88, which is close to the directionality factor of 0.90 given in the Chinese specifications.


Sign in / Sign up

Export Citation Format

Share Document