Study on Special Vehicle’s Handling Stability by Test Technology

2014 ◽  
Vol 623 ◽  
pp. 3-9
Author(s):  
Yuan Zhao ◽  
Hong Jie Cheng ◽  
Yan Liu ◽  
Zhao Jun Wu

According to handling stability problem in using process of special vehicle, its evaluation test method is researched and analyzed. Referring to national profession norm, the on-line detection system of handling stability of special vehicle is constructed, and the design idea of evaluation software is also illustrated. Finally, based on the constructed testing system, the proving ground test of special vehicle is carried out, including the transient response test of steering wheel impulse input, the test of steering wheel returnability, and the steady static circular test. The test results indicate the feasibility and validity of the constructed test system, which provides technical support for detection on-line and fast evaluation of handling stability of special vehicle in riding process, and enhance the road safety during the riding process of missile weapon system.

1979 ◽  
Vol 23 (1) ◽  
pp. 277-281 ◽  
Author(s):  
Dennis A. Attwood

The experiment described herein was conducted to develop a method of predicting driver ability based on objective measures of driving performance. Fifteen subjects drove an instrumented vehicle in live traffic on two-lane and multi-lane road sections in and around the Toronto area. Eight of the subject drivers had at least five years driving experience and seven of them had less than two thousand miles driving experience. On selected portions of the road course, subjects were instructed to maintain certain speeds or lanes. During these periods raw data were collected on vehicle velocity, lane position, steering wheel position, and accelerator pedal position. Using off-line computer programs the data were transformed into a number of descriptive statistics which were then analyzed using univariate and multivariate statistical techniques. Results indicated that even though univariate analyses were generally unsuccessful in differentiating between the groups of experienced and inexperienced drivers, successful discrimination was achieved with combinations of variables. Results suggest that it could be possible to employ on-line monitoring devices to determine whether a driver is capable of a minimum level of driving performance. Implications for the use of such a device in driver licensing and education are discussed.


2021 ◽  
Vol 243 ◽  
pp. 02006
Author(s):  
Rui Liu ◽  
Wanying Liu ◽  
Yihui Zhao

This paper introduces the principle of the simulation load acceleration test system, the principle of accelerating test, and discusses the technology and method of the reliability acceleration test of the box.The accelerated test results show that the simulation load acceleration test can meet the reliability test of the unit, which can shorten the development cycle and have important production practical value for research and new product development.


2018 ◽  
Vol 763 ◽  
pp. 510-517
Author(s):  
Konstantinos A. Skalomenos ◽  
Tadahisa Takeda ◽  
Masahiro Kurata ◽  
Masayoshi Nakashima

The present paper suggests an on-line hybrid test environment for evaluating the seismic performance of steel bracing connections. The test method combines substructuring techniques and finite element analysis. The behavior of the brace member is simulated by the finite element analysis program ABAQUS, while the bracing end connections are physically tested. Two actuators are used to simulate the physical continuity between the analytical and experimental substructures by controlling axial load and out-of-plane rotation. A MATLAB user subroutine is created as the interface between the main control program and ABAQUS to impose the target rotation and axial force to the connection quasi-statically. A gusset plate connection designed to behave as a pin connection is tested and its efficiency to accommodate inelastic rotations up to a 4.0% story drift is evaluated. The test method is reasonable and smooth operation is achieved. The test system ensures pragmatic loading and boundary conditions to the brace connections, which are tested in full interaction with the brace member until failure. The maximum strength and rotation capacity of the connection can be clarified under actual cyclic inelastic rotations and varying axial loads derived from the inelastic behavior of the brace member.


Author(s):  
Maoxu Qian ◽  
Mehmet Sarikaya ◽  
Edward A. Stern

It is difficult, in general, to perform quantitative EELS to determine, for example, relative or absolute compositions of elements with relatively high atomic numbers (using, e.g., K edge energies from 500 eV to 2000 eV), to study ELNES (energy loss near edge structure) signal using the white lines to determine oxidation states, and to analyze EXELFS (extended energy loss fine structure) to study short range ordering. In all these cases, it is essential to have high signal-to-noise (S/N) ratio (low systematical error) with high overall counts, and sufficient energy resolution (∽ 1 eV), requirements which are, in general, difficult to attain. The reason is mainly due to three important inherent limitations in spectrum acquisition with EELS in the TEM. These are (i) large intrinsic background in EELS spectra, (ii) channel-to-channel gain variation (CCGV) in the parallel detection system, and (iii) difficulties in obtaining statistically high total counts (∽106) per channel (CH). Except the high background in the EELS spectrum, the last two limitations may be circumvented, and the S/N ratio may be attained by the improvement in the on-line acquisition procedures. This short report addresses such procedures.


2014 ◽  
Vol 42 (1) ◽  
pp. 2-15
Author(s):  
Johannes Gültlinger ◽  
Frank Gauterin ◽  
Christian Brandau ◽  
Jan Schlittenhard ◽  
Burkhard Wies

ABSTRACT The use of studded tires has been a subject of controversy from the time they came into market. While studded tires contribute to traffic safety under severe winter conditions by increasing tire friction on icy roads, they also cause damage to the road surface when running on bare roads. Consequently, one of the main challenges in studded tire development is to reduce road wear while still ensuring a good grip on ice. Therefore, a research project was initiated to gain understanding about the mechanisms and influencing parameters involved in road wear by studded tires. A test method using the institute's internal drum test bench was developed. Furthermore, mechanisms causing road wear by studded tires were derived from basic analytical models. These mechanisms were used to identify the main parameters influencing road wear by studded tires. Using experimental results obtained with the test method developed, the expected influences were verified. Vehicle driving speed and stud mass were found to be major factors influencing road wear. This can be explained by the stud impact as a dominant mechanism. By means of the test method presented, quantified and comparable data for road wear caused by studded tires under controllable conditions can be obtained. The mechanisms allow predicting the influence of tire construction and variable operating conditions on road wear.


2012 ◽  
Vol 40 (2) ◽  
pp. 83-107 ◽  
Author(s):  
Zhao Li ◽  
Ziran R. Li ◽  
Yuanming M. Xia

ABSTRACT A detailed tire-rolling model (185/75R14), using the implicit to explicit FEA solving strategy, was constructed to provide a reliable, dynamic simulation with several modeling features, including mesh, material modeling, and a solving strategy that could contribute to the consideration of the serious numerical noises. High-quality hexahedral meshes of tread blocks were obtained with a combined mapping method. The actual rubber distributing and nonlinear, stress-strain relationship of the rubber and bilinear elastic reinforcement were modeled for realism. In addition, a tread-rubber friction model obtained from the Laboratory Abrasion and Skid Tester (LAT 100) was applied to simulate the interaction of the tire with the road. The force and moment (F&) behaviors of tire cornering when subjected to a slip-angle sweep of −10 to 10° were studied with that model. To demonstrate the efficiency of the proposed simulation, the computed F&M were compared with experimental results from an MTS Flat-Trac Tire Test System. The computed cornering F&M agreed well with the experimental results, so the footprint shape and contact pressure distribution of several cornering conditions were investigated. Furthermore, the longitudinal forces in response to braking/driving torque application in a slip-ratio range of −100% to 100% were computed. The proposed FEA solution confines the numerical noise within a smaller range and can serve as a valid tool in tire design.


2013 ◽  
Vol 40 (12) ◽  
pp. 1945-1949
Author(s):  
Xue-Jin GAO ◽  
Guang-Sheng LIU ◽  
Li CHENG ◽  
Ling-Xiao GENG ◽  
Ji-Xing XUE ◽  
...  

2020 ◽  
Vol 9 (1) ◽  
pp. 922-933
Author(s):  
Qing’e Wang ◽  
Kai Zheng ◽  
Huanan Yu ◽  
Luwei Zhao ◽  
Xuan Zhu ◽  
...  

AbstractOil leak from vehicles is one of the most common pollution types of the road. The spilled oil could be retained on the surface and spread in the air voids of the road, which results in a decrease in the friction coefficient of the road, affects driving safety, and causes damage to pavement materials over time. Photocatalytic degradation through nano-TiO2 is a safe, long-lasting, and sustainable technology among the many methods for treating oil contamination on road surfaces. In this study, the nano-TiO2 photocatalytic degradation effect of road surface oil pollution was evaluated through the lab experiment. First, a glass dish was used as a substrate to determine the basic working condition of the test; then, a test method considering the impact of different oil erosion degrees was proposed to eliminate the effect of oil erosion on asphalt pavement and leakage on cement pavement, which led to the development of a lab test method for the nano-TiO2 photocatalytic degradation effect of oil pollution on different road surfaces.


Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 2848 ◽  
Author(s):  
Leonel Rosas-Arias ◽  
Jose Portillo-Portillo ◽  
Aldo Hernandez-Suarez ◽  
Jesus Olivares-Mercado ◽  
Gabriel Sanchez-Perez ◽  
...  

The counting of vehicles plays an important role in measuring the behavior patterns of traffic flow in cities, as streets and avenues can get crowded easily. To address this problem, some Intelligent Transport Systems (ITSs) have been implemented in order to count vehicles with already established video surveillance infrastructure. With this in mind, in this paper, we present an on-line learning methodology for counting vehicles in video sequences based on Incremental Principal Component Analysis (Incremental PCA). This incremental learning method allows us to identify the maximum variability (i.e., motion detection) between a previous block of frames and the actual one by using only the first projected eigenvector. Once the projected image is obtained, we apply dynamic thresholding to perform image binarization. Then, a series of post-processing steps are applied to enhance the binary image containing the objects in motion. Finally, we count the number of vehicles by implementing a virtual detection line in each of the road lanes. These lines determine the instants where the vehicles pass completely through them. Results show that our proposed methodology is able to count vehicles with 96.6% accuracy at 26 frames per second on average—dealing with both camera jitter and sudden illumination changes caused by the environment and the camera auto exposure.


Sign in / Sign up

Export Citation Format

Share Document