Hysteresis Compensation Control for a Current-Driven Reluctance Actuator Using the Adaptive MNN

2014 ◽  
Vol 643 ◽  
pp. 60-65 ◽  
Author(s):  
Yu Ping Liu ◽  
Zhi Kang Liu ◽  
Xiao Feng Yang

The next-generation semiconductor lithography equipment needs a suitable actuator to meet the requirement of high-speed, high-acceleration and high-precision. Reluctance actuator, which has a unique property of small volume, low current and can produce great force, is a very suitable choice. One of the major application challenges of reluctance actuator is the hysteresis of the force, which has a nonlinear relationship with respect to the current and is directly related to the final accuracy in the nanometer range. Therefore, it is necessary to study the control method for the hysteresis in reluctance force. This paper proposes a hysteresis control configuration for the current-driven variable reluctance actuator with hysteresis using the adaptive multilayer neural network (MNN), which is used as a learning machine of hysteresis. The simulation results show that the proposed method is effective in overcoming the hysteresis.

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Yu-Ping Liu ◽  
Kang-Zhi Liu ◽  
Xiaofeng Yang

The next-generation fine stage of the wafer scanner needs a suitable actuator to meet the requirements of high speed, high acceleration, and high precision. The voice coil actuator is no longer the best choice because of its large size and the heat dissipation is difficult to solve. The reluctance actuator can provide a big force based on a unique property of small volume and low current, making it a very suitable candidate. But the strong nonlinearity such as the hysteresis between the current and force limits the reluctance actuator applications in nanometer positioning. This paper proposes a nonlinear current control configuration with hysteresis compensation using the adaptive multilayer neural network. Simulation results show that the hysteresis compensator is effective in overcoming the hysteresis and is promising in precision control applications.


2005 ◽  
Vol 128 (4) ◽  
pp. 976-979 ◽  
Author(s):  
Lu Ren ◽  
James K. Mills ◽  
Dong Sun

In this paper, we develop a new control method, termed adaptive synchronized (A-S) control, for improving tracking accuracy of a P-R-R type planar parallel manipulator with parametric uncertainty. The novelty of A-S control, a combination of synchronized control and adaptive control, is in the application of synchronized control to a single parallel manipulator so that tracking accuracy is improved during high-speed, high-acceleration tracking motions. Through treatment of each chain as a submanipulator; the P-R-R manipulator is thus modeled as a multi-robot system comprised of three submanipulators grasping a common payload. Considering the geometry of the platform, these submanipulators are kinematically constrained and move in a synchronous manner. To solve this synchronization control problem, a synchronization error is defined, which represents the coupling effects among the submanipulators. With the employment of this synchronization error, tracking accuracy of the platform is improved. Simultaneously, the estimated unknown parameters converge to their true values through the use of a bounded-gain-forgetting estimator. Experiments conducted on the P-R-R manipulator demonstrate the validity of the approach.


2021 ◽  
Vol 11 (15) ◽  
pp. 6899
Author(s):  
Abdul Aabid ◽  
Sher Afghan Khan ◽  
Muneer Baig

In high-speed fluid dynamics, base pressure controls find many engineering applications, such as in the automobile and defense industries. Several studies have been reported on flow control with sudden expansion duct. Passive control was found to be more beneficial in the last four decades and is used in devices such as cavities, ribs, aerospikes, etc., but these need additional control mechanics and objects to control the flow. Therefore, in the last two decades, the active control method has been used via a microjet controller at the base region of the suddenly expanded duct of the convergent–divergent (CD) nozzle to control the flow, which was found to be a cost-efficient and energy-saving method. Hence, in this paper, a systemic literature review is conducted to investigate the research gap by reviewing the exhaustive work on the active control of high-speed aerodynamic flows from the nozzle as the major focus. Additionally, a basic idea about the nozzle and its configuration is discussed, and the passive control method for the control of flow, jet and noise are represented in order to investigate the existing contributions in supersonic speed applications. A critical review of the last two decades considering the challenges and limitations in this field is expressed. As a contribution, some major and minor gaps are introduced, and we plot the research trends in this field. As a result, this review can serve as guidance and an opportunity for scholars who want to use an active control approach via microjets for supersonic flow problems.


Author(s):  
Matteo Facchino ◽  
Atsushi Totsuka ◽  
Elisa Capello ◽  
Satoshi Satoh ◽  
Giorgio Guglieri ◽  
...  

AbstractIn the last years, Control Moment Gyros (CMGs) are widely used for high-speed attitude control, since they are able to generate larger torque compared to “classical” actuation systems, such as Reaction Wheels . This paper describes the attitude control problem of a spacecraft, using a Model Predictive Control method. The features of the considered linear MPC are: (i) a virtual reference, to guarantee input constraints satisfaction, and (ii) an integrator state as a servo compensator, to reduce the steady-state error. Moreover, the real-time implementability is investigated using an experimental testbed with four CMGs in pyramidal configuration, where the capability of attitude control and the optimization solver for embedded systems are focused on. The effectiveness and the performance of the control system are shown in both simulations and experiments.


2011 ◽  
Vol 383-390 ◽  
pp. 79-85
Author(s):  
Dong Yuan ◽  
Xiao Jun Ma ◽  
Wei Wei

Aiming at the problems such as switch impulsion, insurmountability for influence caused by nonlinearity in one tank gun control system which adopts double PID controller to realize the multimode switch control between high speed and low speed movement, the system math model is built up; And then, Model Reference Adaptive Control (MRAC) method based on nonroutine reference model is brought in and the adaptive gun controller is designed. Consequently, the compensation of nonlinearity and multimode control are implemented. Furthermore, the Tracking Differentiator (TD) is affiliated to the front of controller in order to restrain the impulsion caused by mode switch. Finally, the validity of control method in this paper is verified by simulation.


Author(s):  
Diana Khairallah ◽  
Olivier Chupin ◽  
Juliette Blanc ◽  
Pierre Hornych ◽  
Jean-Michel Piau ◽  
...  

The design and durability of high-speed railway lines is a major challenge in the field of railway transportation. In France, 40 years of feedback on the field behavior of ballasted tracks led to improvements in the design rules. However, the settlement and wear of ballast, caused by dynamic stresses at high frequencies, remains a major problem on high-speed tracks leading to high maintenance costs. Studies have shown that this settlement is linked to the high acceleration produced in the ballast layer by high-speed trains traveling on the track, disrupting the granular assembly. The “Bretagne–Pays de la Loire” high-speed line (BPL HSL), with its varied subgrade conditions, represents the first large-scale application of asphalt concrete (GB) as the ballast sublayer. This line includes 77 km of conventional track with a granular sublayer of unbound granular material (UGM) and 105 km of track with an asphalt concrete sublayer under the ballast. During construction, instruments such as accelerometers, anchored deflection sensors, and strain gages, among others, were installed on four sections of the track. This paper examines the instrumentation as well as the acquisition system installed on the track. The data processing is explained first, followed by a presentation of the ViscoRail software, developed for modeling railway tracks. The bituminous section’s behavior and response is modeled using a multilayer dynamic response model, implemented in the ViscoRail software. A good match between experimental and calculated results is highlighted.


Sign in / Sign up

Export Citation Format

Share Document