Design and Application of a Low Frequency VCO

2014 ◽  
Vol 668-669 ◽  
pp. 808-811
Author(s):  
Hui Min Zhang ◽  
Qing Ping Wu ◽  
Zheng Yuan Zhou ◽  
Xun Wang

The low frequency voltage controlled oscillator (VCO) is designed using integrated operational amplifier. The frequency of the output signal of VCO changes with the magnitude of the input signal voltage, and show a linear relationship within a certain range through the experimental test. Experiments show that, under the input of certain amplitude and frequency range of the square wave, triangle wave, saw-tooth wave, the output waveform of VCO respectively is ambulance, fire siren and other kinds of ambulance siren Signal. This innovative design’ cost is low, realized by analog circuit. It can be used in the practice of teaching case, electronic production or development of sound panels.

Author(s):  
Krishna Vummidi ◽  
Eihab M. Abdel-Rahman ◽  
Bashar K. Hammad ◽  
Sanjay Raman ◽  
Ali H. Nayfeh

We study the effect of bias voltage VDC on the effective nonlinearity of electrostatically clamped-clamped microbeam resonators. We identify three domains in the resonator response: hardening-type, softening-type, and near-linear behaviors. In the near linear domain we show that we can increase the power handling of the resonator without distorting its phase noise performance. We investigate the mixing of low frequency 1/f noise into the input signal. This causes phase distortion of the output signal and is quantized as its phase noise. We find that the amplitude and phase responses of the resonator’s displacement are coupled to each other through the effective non-linearity co-efficient (S), which distorts its phase response in the nonlinear regime. Finally we also present closed form expressions for resonator displacement and current in both linear and non-linear regimes.


1996 ◽  
Vol 06 (08) ◽  
pp. 1595-1600 ◽  
Author(s):  
YANQING CHEN ◽  
LIUQING PEI

The recovered message signal in the synchronized Chua’s system, which is proposed for secure communications, is analyzed by means of both numerical simulations and analytical methods. The results show that the characteristic of “frequency response” of the system is independent of the amplitude of the input message signal, and the amplitude of the recovered signal is suppressed by the system in the lower frequency range and amplified in the higher frequency range. Specifically, we find that, as the frequency of the input signal increases continuously, there is a band of frequency over which a resonance type of phenomenon occurs in the system whereby the input message’s amplitude is amplified, but the location of this band lies beyond the range of the main spectrum of the chaotic driving signal. The phase difference between input signal and output signal is also obtained. Furthermore based on numerical simulations, the characteristic frequency response of a synchronized Lorenz’s system is given, which also shows a band of resonance in the lower range of frequencies.


Geophysics ◽  
1973 ◽  
Vol 38 (1) ◽  
pp. 68-75 ◽  
Author(s):  
A. S. Khalafalla ◽  
W. J. Maegley

An analog circuit digital computer setup was used to evaluate rock electrical impedance and phase angle in the frequency range 0.05 to 2 khz. Room‐temperature measurements were made on several samples of basalt, granite, and quartz. Argand diagram presentation of rock reactance as a function of its resistance at a series of frequencies described a semicircular arc. Rock impedance circular arcs can be used to define the rock resistivity at infinite frequency and the dc resistivity at the limit of zero frequency. Variation of rock resistance with the logarithm of frequency indicated finite rock dielectric dispersions at characteristic frequency ranges. Also, variation of rock reactance with the logarithm of frequency exhibited finite relaxation peaks, which can be used to difine the rock characteristics or turnover frequency as well as a characteristic or relaxation time.


1971 ◽  
Vol 36 (4) ◽  
pp. 527-537 ◽  
Author(s):  
Norman P. Erber

Two types of special hearing aid have been developed recently to improve the reception of speech by profoundly deaf children. In a different way, each special system provides greater low-frequency acoustic stimulation to deaf ears than does a conventional hearing aid. One of the devices extends the low-frequency limit of amplification; the other shifts high-frequency energy to a lower frequency range. In general, previous evaluations of these special hearing aids have obtained inconsistent or inconclusive results. This paper reviews most of the published research on the use of special hearing aids by deaf children, summarizes several unpublished studies, and suggests a set of guidelines for future evaluations of special and conventional amplification systems.


2001 ◽  
Vol 29 (4) ◽  
pp. 258-268 ◽  
Author(s):  
G. Jianmin ◽  
R. Gall ◽  
W. Zuomin

Abstract A variable parameter model to study dynamic tire responses is presented. A modified device to measure terrain roughness is used to measure dynamic damping and stiffness characteristics of rolling tires. The device was used to examine the dynamic behavior of a tire in the speed range from 0 to 10 km/h. The inflation pressure during the tests was adjusted to 160, 240, and 320 kPa. The vertical load was 5.2 kN. The results indicate that the damping and stiffness decrease with velocity. Regression formulas for the non-linear experimental damping and stiffness are obtained. These results can be used as input parameters for vehicle simulation to evaluate the vehicle's driving and comfort performance in the medium-low frequency range (0–100 Hz). This way it can be important for tire design and the forecasting of the dynamic behavior of tires.


2021 ◽  
Vol 11 (4) ◽  
pp. 1932
Author(s):  
Weixuan Wang ◽  
Qinyan Xing ◽  
Qinghao Yang

Based on the newly proposed generalized Galerkin weak form (GGW) method, a two-step time integration method with controllable numerical dissipation is presented. In the first sub-step, the GGW method is used, and in the second sub-step, a new parameter is introduced by using the idea of a trapezoidal integral. According to the numerical analysis, it can be concluded that this method is unconditionally stable and its numerical damping is controllable with the change in introduced parameters. Compared with the GGW method, this two-step scheme avoids the fast numerical dissipation in a low-frequency range. To highlight the performance of the proposed method, some numerical problems are presented and illustrated which show that this method possesses superior accuracy, stability and efficiency compared with conventional trapezoidal rule, the Wilson method, and the Bathe method. High accuracy in a low-frequency range and controllable numerical dissipation in a high-frequency range are both the merits of the method.


Geophysics ◽  
1992 ◽  
Vol 57 (6) ◽  
pp. 854-859 ◽  
Author(s):  
Xiao Ming Tang

A new technique for measuring elastic wave attenuation in the frequency range of 10–150 kHz consists of measuring low‐frequency waveforms using two cylindrical bars of the same material but of different lengths. The attenuation is obtained through two steps. In the first, the waveform measured within the shorter bar is propagated to the length of the longer bar, and the distortion of the waveform due to the dispersion effect of the cylindrical waveguide is compensated. The second step is the inversion for the attenuation or Q of the bar material by minimizing the difference between the waveform propagated from the shorter bar and the waveform measured within the longer bar. The waveform inversion is performed in the time domain, and the waveforms can be appropriately truncated to avoid multiple reflections due to the finite size of the (shorter) sample, allowing attenuation to be measured at long wavelengths or low frequencies. The frequency range in which this technique operates fills the gap between the resonant bar measurement (∼10 kHz) and ultrasonic measurement (∼100–1000 kHz). By using the technique, attenuation values in a PVC (a highly attenuative) material and in Sierra White granite were measured in the frequency range of 40–140 kHz. The obtained attenuation values for the two materials are found to be reliable and consistent.


2019 ◽  
Vol 9 (15) ◽  
pp. 3157 ◽  
Author(s):  
O ◽  
Jin ◽  
Choi

In this paper, we propose a compact four-port coplanar antenna for cognitive radio applications. The proposed antenna consists of a coplanar waveguide (CPW)-fed ultra-wideband (UWB) antenna and three inner rectangular loop antennas. The dimensions of the proposed antenna are 42 mm × 50 mm × 0.8 mm. The UWB antenna is used for spectrum sensing and fully covers the UWB spectrum of 3.1–10.6 GHz. The three loop antennas cover the UWB frequency band partially for communication purposes. The first loop antenna for the low frequency range operates from 2.96 GHz to 5.38 GHz. The second loop antenna is in charge of the mid band from 5.31 GHz to 8.62 GHz. The third antenna operates from 8.48 GHz to 11.02 GHz, which is the high-frequency range. A high isolation level (greater than 17.3 dB) is realized among the UWB antenna and three loop antennas without applying any additional decoupling structures. The realized gains of the UWB antenna and three loop antennas are greater than 2.7 dBi and 1.38 dBi, respectively.


Sign in / Sign up

Export Citation Format

Share Document