Thermal Reaction Kinetics of Fly Ash Cement Paste at the Age of 28 Days

2014 ◽  
Vol 668-669 ◽  
pp. 91-94 ◽  
Author(s):  
Xiao Fang He ◽  
Chang Wen Miao ◽  
Yong Hao Wu ◽  
Xin Xin Cao ◽  
Dan Liu

The thermal reaction kinetics of fly ash cement pastes were studied by Differential Scanning Calorimetry (DSC) and Thermal Gravity Analysis-Differential Thermal Gravity (TG-DTG) method, the kinetics parameters such as apparent activation energy was calculated by the Kissinger method, and the physical parameters were obtained. The result show that the fly ash cement pastes performance three endothermic reaction stages at different heating rates, peak temperatures of each stage at the range of 91.85~121.08°C, 453.93~496.48°C, and 680.21~751.62°C. TG-DTG show there were three thermal decomposition stages, thermal dehydration reaction apparent activation energy of fly ash cement pastes in each stage were 47.23kJ/mol, 128.84kJ/mol, and 134.07kJ/mol.

2004 ◽  
Vol 19 (10) ◽  
pp. 2929-2937 ◽  
Author(s):  
Chain-Ming Lee ◽  
Yeong-Iuan Lin ◽  
Tsung-Shune Chin

Nonisothermal crystallization kinetics of amorphous chalcogenide Ga–Sb–Te films with compositions along the pseudo-binary tie-lines connecting Sb7Te3−GaSb and Sb2Te3–GaSb of the ternary phase diagram were investigated by means of differential scanning calorimetry. Powder samples were prepared firstly by film deposition using a co-sputtering method; the films were then stripped from the substrate. The activation energy (Ea) and rate factor (Ko) were evaluated from the heating rate dependency of the crystallization temperature using the Kissinger method. The kinetic exponent (n) was deduced from the exothermic peak integrals using the Ozawa method. The crystallization temperature (Tx = 181 to 327 °C) and activation energy (Ea= 2.8 to 6.5 eV) increased monotonically with increasing GaSb content and reached a maximum value in compositions located at the vicinity of GaSb. The kinetic exponent is temperature dependent and shows higher values in the SbTe-rich compositions. Promising media compositions worthy of further studies were identified through the determined kinetics parameters.


2012 ◽  
Vol 706-709 ◽  
pp. 1311-1317 ◽  
Author(s):  
S.A. Hasheminezhad ◽  
M. Haddad-Sabzevar ◽  
S. Sahebian

Non-isothermal crystallization kinetics of Co67Fe4Cr7Si8B14amorphous ribbons was studied by differential scanning calorimetry (DSC) technique under 10, 20, 30, 40 and 80 °Cmin-1heating rates. It is found that Co67Fe4Cr7Si8B14amorphous alloy exhibits two-stage crystallization on heating. The two crystallization peaks shift to higher temperatures with increasing heating rate. The apparent activation energies (EC) for the first stage of crystallization were determined as 443.44 and 434.47 kJmol-1by using the Kissinger and Ozawa equations, respectively. Frequency factor (A) estimated to be 1.084×1026s-1using Kissinger equation. Kinetics parameters such as Crystallization exponent (n) and dimensionality of growth (Ndim) were determined using JMA (Johnson-Mehl-Avrami) method. Details of the nucleation and growth behaviours during the non-isothermal crystallization were studied in terms of local activation energy EC(x) by the OFW (Ozawa, Flynn and Wall) method. Also the activation energy for nucleation (En) and growth (Eg) separately estimated.


Author(s):  
Adnan Bozdoğan ◽  
Kurban Yaşar

This research was performed to elucidate the effects of temperature on the degradation kinetics of anthocyanins in shalgam beverage. Shalgam beverage was produced according to traditional production method. Then, it was kept at three different temperatures (65°C, 75°C, and 85°C) for 12 hours, and the relevant quantities of anthocyanins were determined thereafter. The research revealed that degradation of the anthocyanins was well described with a 1st-order reaction kinetics model and the R2 values varied in the range of 0.9059-0.9715. Activation energy of the reaction was determined to be 48537 Joule/mole. The half-lives of anthocyanins at 65°C and 75° C, and 85°C were found to be 138.63, 136.72, and 51.57, respectively. Compared the half-life periods at different temperatures, anthocyanins were found to be more resistant at 65°C and 75°C than at 85°C.


Molecules ◽  
2019 ◽  
Vol 24 (6) ◽  
pp. 1163 ◽  
Author(s):  
Walid Hikal ◽  
Brandon Weeks

Non-isothermal sublimation kinetics of low-volatile materials is more favorable over isothermal data when time is a crucial factor to be considered, especially in the subject of detecting explosives. In this article, we report on the in-situ measurements of the sublimation activation energy for 2,4,6-trinitrotoluene (TNT) continuous nanofilms in air using rising-temperature UV-Vis absorbance spectroscopy at different heating rates. The TNT films were prepared by the spin coating deposition technique. For the first time, the most widely used procedure to determine sublimation rates using thermogravimetry analysis (TGA) and differential scanning calorimetry (DSC) was followed in this work using UV-Vis absorbance spectroscopy. The sublimation kinetics were analyzed using three well-established calculating techniques. The non-isothermal based activation energy values using the Ozawa, Flynn–Wall, and Kissinger models were 105.9 ± 1.4 kJ mol−1, 102.1 ± 2.7 kJ mol−1, and 105.8 ± 1.6 kJ mol−1, respectively. The calculated activation energy agreed well with our previously reported isothermally-measured value for TNT nanofilms using UV-Vis absorbance spectroscopy. The results show that the well-established non-isothermal analytical techniques can be successfully applied at a nanoscale to determine sublimation kinetics using absorbance spectroscopy.


2019 ◽  
Vol 33 (09) ◽  
pp. 1950073 ◽  
Author(s):  
Matlab Mirzayev ◽  
Ertugrul Demir ◽  
Khagani Mammadov ◽  
Ravan Mehdiyeva ◽  
Sakin Jabarov ◽  
...  

In this paper, high purity boron carbide samples were irradiated by [Formula: see text]Co gamma radioisotope source (0.27 Gy/s dose rate) with 50, 100, 150 and 200 irradiation hours at room-temperature. The unirradiated and irradiated boron carbide samples were heated from 30[Formula: see text]C to 1000[Formula: see text]C at a heating rate of 5[Formula: see text]C/min under the argon gas atmosphere of flow rate 20 ml/min. Thermogravimetric (TG) and Differential Scanning Calorimetry (DSC) were carried out in order to understand the thermodynamic kinetics of boron carbide samples. The weight kinetics, activation energy and specific heat capacity of the unirradiated and irradiated boron carbide samples were examined in two parts, T [Formula: see text] 650[Formula: see text]C and T [Formula: see text] 650[Formula: see text]C, according to the temperature. The dynamic of quantitative changes in both ranges is different depending on the irradiation time. While the phase transition of unirradiated boron carbide samples occurs at 902[Formula: see text]C, this value shifts upto 940[Formula: see text]C in irradiated samples depending on the irradiation time. The activation energy of the unirradiated boron carbide samples decreased from 214 to 46 J/mol in the result of 200[Formula: see text]h gamma irradiation. The reduction of the activation energy after the irradiation compared to the initial state shows that the dielectric properties of the irradiated boron carbide samples have been improved. After the gamma irradiation, two energy barrier states depending on the absorption dose of samples were formed in the irradiated samples. The first and second energy barriers occurred in 0.56–0.80 and 0.23–0.36 eV energy intervals, respectively. The existence of two energy levels in the irradiated boron carbide indicates that the point defects are at deep levels, close to the valence band.


2014 ◽  
Vol 988 ◽  
pp. 31-35
Author(s):  
Jia Le Song ◽  
Chan Chan Li ◽  
Zhi Mi Zhou ◽  
Chao Qiang Ye ◽  
Wei Guang Li

Curing kinetics of MEP-15/593 system and MEP-15/593/660 system is studied by means of differential scanning calorimetry (DSC). Curing kinetic parameters are evaluated and the relationship between diluent 660 and the curing properties is investigated. The results show that the diluent 660 can not only reduce viscosity and activation energy, but also improve the degree of cure and conversion ratio.


1950 ◽  
Vol 28b (7) ◽  
pp. 358-372
Author(s):  
Cyrias Ouellet ◽  
Adrien E. Léger

The kinetics of the polymerization of acetylene to cuprene on a copper catalyst between 200° and 300 °C. have been studied manometrically in a static system. The maximum velocity of the autocatalytic reaction shows a first-order dependence upon acetylene pressure. The reaction is retarded in the presence of small amounts of oxygen but accelerated by preoxidation of the catalyst. The apparent activation energy, of about 10 kcal. per mole for cuprene growth between 210° and 280 °C., changes to about 40 kcal. per mole above 280 °C. at which temperature a second reaction seems to set in. Hydrogen, carbon monoxide, or nitric oxide has no effect on the reaction velocity. Series of five successive seedings have been obtained with cuprene originally grown on cuprite, and show an effect of aging of the cuprene.


2014 ◽  
Vol 50 (1) ◽  
pp. 15-21 ◽  
Author(s):  
Y. Wang ◽  
L. Wang ◽  
J. Yu ◽  
K.C. Chou

In order to optimize the current reduction process of chromite, a good knowledge of reduction mechanism involved is required. The basic component in chromite ore is FeCr2O4, thus, kinetic investigation of synthetic FeCr2O4 with different amount of carbon were carried out in the temperature range of 1473K to 1673K under both isothermal and non-isothermal mode. The iron can be easily reduced compared with chromium. And higher reduction degree of chromite can be achieved by increasing temperature and carbon content. With the supporting of X-ray Diffraction and Scanning Electron Microscope methods, the formation of metallic products followed the sequence: Fe-C alloy, (Fe,Cr)7C3and Fe-Cr-C alloy. Kinetics analysis showed that the first stage was controlled by nucleation with an apparent activation energy of 120kJ/mol, while the chromium reduction was controlled by crystallochemical transformation with an apparent activation energy of 288kJ/mol.


Sign in / Sign up

Export Citation Format

Share Document