Study on ELISA Plates Modified with Methylacrylic Acid by 60Co Irradiation

2014 ◽  
Vol 670-671 ◽  
pp. 219-223
Author(s):  
Di Chen ◽  
Hua Shan Wang

Surface modified ELISA plates grafted with methylacrylic acid (MAA) were prepared by60Co γ-Ray irradiation at room temperature in MAA water solution. The optimum conditions of modification were decided by the water contact angle and the absorbency of polystyrene enzyme label plate. FTIR, XRD spectra and AFM images show that MAA and its polymer have been grafted to the surface of the ELISA plates induced by60Co γ-Ray irradiation. The volume concentration of MAA aqueous solutions reached 10%, and the radiative intensity was 10kGy, and correspondingly, the content of carboxyl group on the surface of ELISA plates reached 0.30mmol/cm2.

2012 ◽  
Vol 730-732 ◽  
pp. 903-908 ◽  
Author(s):  
Olga Naboka ◽  
Katia Rodriguez ◽  
A. Farshad Toomadj ◽  
Anke Sanz-Velasco ◽  
Guillermo Toriz ◽  
...  

Carbon nanofibrous sheets (conductivity 1.9 to 35.5 S×cm-1, water contact angle up to 137°) consisting of amorphous fibers with diameter of 20 – 150 nm (C:O atomic ratio 25.4 – 86.0) were synthesized by carbonization of cellulose regenerated from electrospun cellulose acetate mats with three methods of alkaline deacetylation. It was established that C:O atomic ratio, conductivity and hydrophobicity depended on the regeneration method and on the temperature of carbonization. The highest flexibility, lowest conductivity and lowest water contact angle was observed for carbon synthesized from cellulose regenerated with NaOH in ethanol (0.05 mol/l) for 24 hours at room temperature. The highest conductivity, highest water contact angle and lowest flexibility was observed for carbon synthesized from cellulose regenerated with water solution of NaOH/NaCl (3.75 M NaOH, 2.1 M NaCl) during 15 minutes at 65°C.


2018 ◽  
Vol 21 (7) ◽  
pp. 462-467
Author(s):  
Babak Sadeghi

Aim and Objective: Ultrafine Ag/ZnO nanotetrapods (AZNTP) have been prepared successfully using silver (I)–bis (oxalato) zinc complex and 1, 3-diaminopropane (DAP) with a phase separation system, and have been injected into a diethyl/water solution. Materials and Methods: This crystal structure and lattice constant of the AZNTP obtained were investigated by means of a SEM, XRD, TEM and UV-vis spectrum. Results: The results of the present study demonstrated the growth and characterization AZNTP for humidity sensing and DAP plays a key role in the determination of particle morphology. AZNTP films with 23 nm in arm diameter have shown highly sensitive, quick response sensor material that works at room temperature.


2021 ◽  
Vol 143 (4) ◽  
pp. 2068-2077
Author(s):  
Yihui He ◽  
Constantinos C. Stoumpos ◽  
Ido Hadar ◽  
Zhongzhen Luo ◽  
Kyle M. McCall ◽  
...  
Keyword(s):  

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Hassan Kabirifard ◽  
Pardis Hafez Taghva ◽  
Hossein Teimouri ◽  
Niloofar Koosheshi ◽  
Parastoo Javadpour ◽  
...  

The reaction of 4-benzoyl-5-phenylamino-2,3-dihydrothiophene-2,3-dione (1) with aminoheteroaryls, lamotrigine, 1,3-diaminoheteroaryls, dapsone, NH2R (hydroxylamine, DL-1-phenylethylamine, and metformin), and 4,4′-bipyridine in THF/H2O (1 : 1) at room temperature led to 3-N-phenylthiocarbamoyl-2-butenamides 2–5, while that with naphthylamines and 1,3-phenylenediamine in ethanol at high temperature led to 5-phenylamino-2,5-dihydrothiophene-2-ones 6–8 as organic ligands in the medium to good yields. These showed the nucleophilic attacks of N-nucleophiles, except primary aromatic amines, on thioester carboxyl group (C-2) of thiophene-2,3-dione ring 1. However, the nucleophilic attacks of primary aromatic amines on the carbonyl group (C-3) of thiophene-2,3-dione 1 occurred in the form of substituted thiophenes.


2018 ◽  
Vol 2 (4) ◽  
pp. 74 ◽  
Author(s):  
Abinash Tripathy ◽  
Patryk Wąsik ◽  
Syama Sreedharan ◽  
Dipankar Nandi ◽  
Oier Bikondoa ◽  
...  

Functional ZnO nanostructured surfaces are important in a wide range of applications. Here we report the simple fabrication of ZnO surface structures at near room temperature with morphology resembling that of sea urchins, with densely packed, μm-long, tapered nanoneedles radiating from the urchin center. The ZnO urchin structures were successfully formed on several different substrates with high surface density and coverage, including silicon (Si), glass, polydimethylsiloxane (PDMS), and copper (Cu) sheets, as well as Si seeded with ZnO nanocrystals. Time-resolved SEM revealed growth kinetics of the ZnO nanostructures on Si, capturing the emergence of “infant” urchins at the early growth stage and subsequent progressive increases in the urchin nanoneedle length and density, whilst the spiky nanoneedle morphology was retained throughout the growth. ε-Zn(OH)2 orthorhombic crystals were also observed alongside the urchins. The crystal structures of the nanostructures at different growth times were confirmed by synchrotron X-ray diffraction measurements. On seeded Si substrates, a two-stage growth mechanism was identified, with a primary growth step of vertically aligned ZnO nanoneedle arrays preceding the secondary growth of the urchins atop the nanoneedle array. The antibacterial, anti-reflective, and wetting functionality of the ZnO urchins—with spiky nanoneedles and at high surface density—on Si substrates was demonstrated. First, bacteria colonization was found to be suppressed on the surface after 24 h incubation in gram-negative Escherichia coli (E. coli) culture, in contrast to control substrates (bare Si and Si sputtered with a 20 nm ZnO thin film). Secondly, the ZnO urchin surface, exhibiting superhydrophilic property with a water contact angle ~ 0°, could be rendered superhydrophobic with a simple silanization step, characterized by an apparent water contact angle θ of 159° ± 1.4° and contact angle hysteresis ∆θ < 7°. The dynamic superhydrophobicity of the surface was demonstrated by the bouncing-off of a falling 10 μL water droplet, with a contact time of 15.3 milliseconds (ms), captured using a high-speed camera. Thirdly, it was shown that the presence of dense spiky ZnO nanoneedles and urchins on the seeded Si substrate exhibited a reflectance R < 1% over the wavelength range λ = 200–800 nm. The ZnO urchins with a unique morphology fabricated via a simple route at room temperature, and readily implementable on different substrates, may be further exploited for multifunctional surfaces and product formulations.


2012 ◽  
Vol 550-553 ◽  
pp. 1293-1298 ◽  
Author(s):  
Lin Huo Gan ◽  
Ming Song Zhou ◽  
Xue Qing Qiu

Water-soluble carboxymethylated lignin (CML) was synthesized using wheat straw alkali lignin (WAL) in aqueous medium. The process of carboxymethylation was optimized with respect to the NaOH concentration, monochloroacetic acid concentration, reaction temperature and time. The optimized product has a yield of 80.47% and a carboxyl group content of 2.8231 mmol•g-1, respectively. The optimum conditions for carboxymethylation are NaOH concentration of 20.0% (wt%), monochloroacetic acid concentration of 37.5% (wt%), temperature of 70 °C and time of 90 min. The optimized CML was characterized by FTIR spectroscopy, 1H NMR spectroscopy and interfacial tension apparatus. The result shows that the substitution reaction of carboxymethylation occurs simultaneously in the phenolic hydroxyl group and aliphatic hydroxyl group in WAL. CML has the surface activity in water for industrial application as dispersant.


2013 ◽  
Vol 690-693 ◽  
pp. 1636-1640 ◽  
Author(s):  
Te Hsing Wu ◽  
Ko Shao Chen ◽  
Lie Hang Shen

In this study, We immobilized hydrogel material onto expanded polytetrafluoroethylene (ePTFE) film and used as an functional biomaterial. The material is a film containing titanium oxide onto polymer sheet. The hydrogel film is hydrophilic, bacterial inactivated and bio-compatible. In order to improve the ePTFE film biocompatibility, the cold plasma or γ-ray technology was used with acetic acid as monomer to deposit onto ePTFE film and then (N-isopropylacrylamide) was grafted onto the surface by radiation photo-grafting. The characteristics of the material surface were evaluated with X-ray photoelectron spectroscopy (XPS), FTIR and water contact angle. It was found that the contact angle of water on the untreated ePTFE significantly decrease from125° to 72° after ePTFE film being treated with acetic acid plasma deposition procedure. Due to the hydrophilicity of poly (N-isopropylacrylamide), so the contact angle of water on the ePTFE-g-NIPAAm almost approached to 0°. This thermal sensitive ePTFE hydrogels can be applied to artificial guiding tube and wound dressing material.


2012 ◽  
Vol 538-541 ◽  
pp. 52-59
Author(s):  
Jie Zhu ◽  
Ming Shi Li ◽  
Li Qun Wang ◽  
Xiao Lin Zhu

We reported the preparation of surface modified poly (ethylene oxide terephthalate) - poly (butylene terephthalate) membrane by the method of silk fibroin anchoring, namely SF/(PEOT/PBT). Its surface properties were characterized by contact angles and XPS and the biocompatibility of the composite membrane was further evaluated by human salivary epithelial cells (HSG cells) growth in vitro. Results revealed that SF/(PEOT/PBT) possessed the low water contact angle (48.0±3.0°) and immobilized a great amount of fibroin (fibroin surface coverage: 26.39 wt%), which attributed to the formation of polar groups such as hydrosulfide group, sulfonic group, carboxyl and carbonyl ones in the process of SO2 plasma treatment. HSG cells growth in vitro indicated that the silk fibroin anchoring could significantly enhance the biocompatibility of PEOT/PBT membrane, which suggested the potential application of fibroin anchoring PEOT/PBT for clinical HSG cells transplantation in the artificial salivary gland construct.


2018 ◽  
Vol 5 (7) ◽  
pp. 180598 ◽  
Author(s):  
Xiaoming Wang ◽  
Xingeng Li ◽  
Qingquan Lei ◽  
Yaping Wu ◽  
Wenjing Li

Composite superhydrophobic coating built with film former and filler is attracting much attention for its facile and convenient fabrication, but significant limitations and disadvantages still remain. In this paper, a composite superhydrophobic coating is introduced which can be cured at room temperature and made by dispersing modified silica nanoparticles with 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane in fluorosilicone resin. Silica content and dispersion time showed obvious influences on the morphology and topography of composite coating by reuniting dispersed nanoparticles to form peaks on the surface. Excessively large distances between these peaks would decrease water contact angle value. Increasing slope of peaks, appropriate distance between peaks and decreasing diameter size of peaks would diminish sliding angle value. Formation mechanism of the composite coating based on fluorosilicone resin and modified nanoparticles was explained using interpenetrating polymer model.


Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7316
Author(s):  
Nicola Sarzi Amadè ◽  
Manuele Bettelli ◽  
Nicola Zambelli ◽  
Silvia Zanettini ◽  
Giacomo Benassi ◽  
...  

The analysis of γ-ray spectra can be an arduous task, especially in the case of room temperature semiconductor detectors, where several distortions and instrumental artifacts conceal the true spectral shape. We developed a genetic algorithm to perform the unfolding of γ-spectra in order to restore the true energy distribution of the incoming radiation. We successfully validated our approach on experimental spectra of four radionuclides (241Am, 57Co, 137Cs and 133Ba) acquired with two CdZnTe-based detectors with different contact geometries (single pixel and drift strip). The unfolded spectra consist of δ-like peaks in correspondence with the radiation emissions of each radioisotope.


Sign in / Sign up

Export Citation Format

Share Document