Study on Synthesizing Ammonia with Material Properties under Normal Temperature and Pressure by Microwave Plasma Method

2014 ◽  
Vol 685 ◽  
pp. 80-84
Author(s):  
Qian Zou ◽  
Jun Lei Song

NH3was synthesized from H2and N2under normal temperature and pressure by microwave plasma. The effects of microwave input power, ratio of H2/N2, the amount of total material gas concentration and catalyst on the synthetic reaction were studied. The volume fraction of NH3can reach 0.58% under the optimal condition.

Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2831
Author(s):  
Teng Wang ◽  
Wantao Li ◽  
Roberto Quaglia ◽  
Pere L. Gilabert

This paper presents an auto-tuning approach for dual-input power amplifiers using a combination of global optimisation search algorithms and adaptive linearisation in the optimisation of a multiple-input power amplifier. The objective is to exploit the extra degrees of freedom provided by dual-input topologies to enhance the power efficiency figures along wide signal bandwidths and high peak-to-average power ratio values, while being compliant with the linearity requirements. By using heuristic search global optimisation algorithms, such as the simulated annealing or the adaptive Lipschitz Optimisation, it is possible to find the best parameter configuration for PA biasing, signal calibration, and digital predistortion linearisation to help mitigating the inherent trade-off between linearity and power efficiency. Experimental results using a load-modulated balanced amplifier as device-under-test showed that after properly tuning the selected free-parameters it was possible to maximise the power efficiency when considering long-term evolution signals with different bandwidths. For example, a carrier aggregated a long-term evolution signal with up to 200 MHz instantaneous bandwidth and a peak-to-average power ratio greater than 10 dB, and was amplified with a mean output power around 33 dBm and 22.2% of mean power efficiency while meeting the in-band (error vector magnitude lower than 1%) and out-of-band (adjacent channel leakage ratio lower than −45 dBc) linearity requirements.


2018 ◽  
Vol 15 (6) ◽  
pp. 771-785
Author(s):  
Hongbin Zhao ◽  
Yu Cao ◽  
Chang Liu ◽  
Xiang Qi

PurposeThe purpose of this paper is to investigate the performance of coke oven gas (COG)-combined cooling, heating and power (CCHP) system and to mainly focus on studying the influence of the environmental conditions, operating conditions and gas conditions on the performance of the system and on quantifying the distribution of useful energy loss and the saving potential of the integrated system changing with different parameters.Design/methodology/approachThe working process of COG-CCHP was simulated through the establishment of system flow and thermal analysis mathematical model. Using exergy analysis method, the COG-CCHP system’s energy consumption status and the performance changing rules were analyzed.FindingsThe results showed that the combustion chamber has the largest exergy loss among the thermal equipments. Reducing the environmental temperature and pressure can improve the entire system’s reasonable degree of energy. Higher temperature and pressure improved the system’s perfection degree of energy use. Relatively high level of hydrogen and low content of water in COG and an optimal range of CH4volume fraction between 35 per cent and 46 per cent are required to ensure high exergy efficiency of this integration system.Originality/valueThis paper proposed a CCHP system with the utilization of coke oven gas (COG) and quantified the distribution of useful energy loss and the saving potential of the integrated system under different environmental, operating and gas conditions. The weak links of energy consumption within the system were analyzed, and the characteristics of COG in this way of using were illustrated. This study can provide certain guiding basis for further research and development of the CCHP system performance.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 626
Author(s):  
Seokhun Kwon ◽  
Seokwon Lee ◽  
Joouk Kim ◽  
Chulmin Park ◽  
Hosung Jung ◽  
...  

Recently, as air pollution and particulate matter worsen, the importance of a platform that can monitor the air environment is emerging. Especially, among air pollutants, nitrogen dioxide (NO2) is a toxic gas that can not only generate secondary particulate matter, but can also derive numerous toxic gases. To detect such NO2 gas at low concentration, we fabricated a GNWs/NiO-WO3/GNWs heterostructure-based gas sensor using microwave plasma-enhanced chemical vapor deposition (MPECVD) and sputter, and we confirmed the NO2 detection characteristics between 10 and 50 ppm at room temperature. The morphology and carbon lattice characteristics of the sensing layer were investigated using field emission scanning electron microscopy (FESEM) and Raman spectroscopy. In the gas detection measurement, the resistance negative change according to the NO2 gas concentration was recorded. Moreover, it reacted even at low concentrations such as 5–7 ppm, and showed excellent recovery characteristics of more than 98%. Furthermore, it also showed a change in which the reactivity decreased with respect to humidity of 33% and 66%.


1984 ◽  
pp. 410-508

Abstract This chapter covers the emerging practice of quantitative microscopy and its application in the study of the microstructure of metals. It describes the methods used to quantify structural gradients, volume fraction, grain size and distribution, and other features of interest. It provides examples showing how the various features appear, how they are measured, and how the resulting data are converted into usable form. The chapter also discusses the quantification of fracture morphology and its correlation with material properties and behaviors.


Carbon ◽  
2011 ◽  
Vol 49 (2) ◽  
pp. 484-486 ◽  
Author(s):  
Pejman Hojati-Talemi ◽  
George P. Simon

Author(s):  
Yaser Kiani ◽  
Mostafa Mirzaei

In this research, post-buckling response of sandwich beams with carbon nanotube reinforced face sheets subjected to uniform temperature rise loading and resting on a two-parameter elastic foundation is investigated. A single-layer theory formulation based on the first-order shear deformation beam theory is used. Material properties of the media are obtained according to a refined rule of mixtures approach which contains efficiency parameters. Suitable for the large deformations, von-Kármán strains are taken into consideration. The elastic foundation is modelled as the Pasternak model which takes into account the shear interaction of the springs. Material properties of the face sheets are considered to be position and temperature dependent. The governing equations of the system are obtained using the Ritz method for various combinations of clamped, simply supported and sliding supported edges. Post-buckling equilibrium path of the beam is obtained according to an iterative displacement control strategy. Numerical results of the present study are compared with the available data in the open literature. Then, the numerical results are provided to explore the effect of side-to-thickness ratio, volume fraction of carbon nanotube, distribution pattern of carbon nanotube, the ratio of face thickness-to-host thickness, boundary conditions and elastic foundation.


2006 ◽  
Vol 74 (5) ◽  
pp. 861-874 ◽  
Author(s):  
Florin Bobaru

We present a numerical approach for material optimization of metal-ceramic functionally graded materials (FGMs) with temperature-dependent material properties. We solve the non-linear heterogeneous thermoelasticity equations in 2D under plane strain conditions and consider examples in which the material composition varies along the radial direction of a hollow cylinder under thermomechanical loading. A space of shape-preserving splines is used to search for the optimal volume fraction function which minimizes stresses or minimizes mass under stress constraints. The control points (design variables) that define the volume fraction spline function are independent of the grid used in the numerical solution of the thermoelastic problem. We introduce new temperature-dependent objective functions and constraints. The rule of mixture and the modified Mori-Tanaka with the fuzzy inference scheme are used to compute effective properties for the material mixtures. The different micromechanics models lead to optimal solutions that are similar qualitatively. To compute the temperature-dependent critical stresses for the mixture, we use, for lack of experimental data, the rule-of-mixture. When a scalar stress measure is minimized, we obtain optimal volume fraction functions that feature multiple graded regions alternating with non-graded layers, or even non-monotonic profiles. The dominant factor for the existence of such local minimizers is the non-linear dependence of the critical stresses of the ceramic component on temperature. These results show that, in certain cases, using power-law type functions to represent the material gradation in FGMs is too restrictive.


2020 ◽  
Vol 142 (4) ◽  
Author(s):  
Emre Özaslan ◽  
Ali Yetgin ◽  
Bülent Acar ◽  
Volkan Coşkun ◽  
Tarık Olğar

Abstract Due to high stiffness/weight ratio, composite materials are widely used in aerospace applications such as motor case of rockets which can be regarded as a pressure vessel. The most commonly used method to manufacture pressure vessels is the wet filament winding. However, the mechanical performance of a filament wound pressure vessel directly depends on the manufacturing process, manufacturing site environmental condition, and material properties of matrix and fiber. The designed pressure vessel may not be manufactured because of the mentioned issues. Therefore, manufacturing of filament wound composite structures are based on manufacturing experience and experiment. In this study, effects of layer-by-layer thickness and fiber volume fraction variation due to manufacturing process on the mechanical performance were investigated for filament wound pressure vessel with unequal dome openings. First, the finite element model was created for designed thickness dimensions and constant material properties for all layers. Then, the model was updated. The updated finite element model considered the thickness of each layer separately and variation of fiber volume fraction between the layers. Effects of the thickness and fiber volume fraction on the stress distribution along the motor axial direction were shown. Also hydrostatic pressurization tests were performed to verify finite element analysis in terms of fiber direction strain through the motor case outer surface. Important aspects of analyzing a filament wound pressure vessel were addressed for designers.


Sign in / Sign up

Export Citation Format

Share Document