Sliding-Mode Position Control of PMSLM Based on Grey Forecasting Model

2014 ◽  
Vol 687-691 ◽  
pp. 85-88
Author(s):  
Hua Sun ◽  
Yue Hong Dai ◽  
Chuan Sheng Tang

This paper presented a new method of sliding mode control for position control problem in view of the uncertainty of friction model of permanent magnet synchronous linear motor (PMSLM). This is an estimation compensation control scheme for non-homogeneous sequence data.The stability of the proposed control law was verified according to Lyapunov stable theory.Comparison with traditional control was given through Matlab simulations, which proved the feasibility and efficiency of the proposed control method for PMSLM drive system.

Actuators ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 154
Author(s):  
Bin Wang ◽  
Pengda Ren ◽  
Xinhao Huang

A piston piezoelectric (PZT) pump has many advantages for the use of light actuators. How to deal with the contradiction between the intermittent oil supplying and position control precision is essential when designing the controller. In order to accurately control the output of the actuator, a backstepping sliding-mode control method based on the Lyapunov function is introduced, and the controller is designed on the basis of establishing the mathematical model of the system. The simulation results show that, compared with fuzzy PID and ordinary sliding-mode control, backstepping sliding-mode control has a stronger anti-jamming ability and tracking performance, and improves the control accuracy and stability of the piezoelectric pump-controlled actuator system.


2021 ◽  
Vol 18 (1) ◽  
pp. 172988142199399
Author(s):  
Xiaoguang Li ◽  
Bi Zhang ◽  
Daohui Zhang ◽  
Xingang Zhao ◽  
Jianda Han

Shape memory alloy (SMA) has been utilized as the material of smart actuators due to the miniaturization and lightweight. However, the nonlinearity and hysteresis of SMA material seriously affect the precise control. In this article, a novel disturbance compensation-based adaptive control scheme is developed to improve the control performance of SMA actuator system. Firstly, the nominal model is constructed based on the physical process. Next, an estimator is developed to online update not only the unmeasured system states but also the total disturbance. Then, the novel adaptive controller, which is composed of the nominal control law and the compensation control law, is designed. Finally, the proposed scheme is evaluated in the SMA experimental setup. The comparison results have demonstrated that the proposed control method can track reference trajectory accurately, reject load variations and stochastic disturbances timely, and exhibit satisfactory robust stability. The proposed control scheme is system independent and has some potential in other types of SMA-actuated systems.


Author(s):  
Abdelkrim Brahmi ◽  
Maarouf Saad ◽  
Brahim Brahmi ◽  
Ibrahim El Bojairami ◽  
Guy Gauthier ◽  
...  

In the research put forth, a robust adaptive control method for a nonholonomic mobile manipulator robot, with unknown inertia parameters and disturbances, was proposed. First, the description of the robot’s dynamics model was developed. Thereafter, a novel adaptive sliding mode control was designed, to which all parameters describing involved uncertainties and disturbances were estimated by the adaptive update technique. The proposed control ensures a relatively good system tracking, with all errors converging to zero. Unlike conventional sliding mode controls, the suggested is able to achieve superb performance, without resulting in any chattering problems, along with an extremely fast system trajectories convergence time to equilibrium. The aforementioned characteristics were attainable upon using an innovative reaching law based on potential functions. Furthermore, the Lyapunov approach was used to design the control law and to conduct a global stability analysis. Finally, experimental results and comparative study collected via a 05-DoF mobile manipulator robot, to track a given trajectory, showing the superior efficiency of the proposed control law.


Author(s):  
Yohan Díaz-Méndez ◽  
Leandro Diniz de Jesus ◽  
Marcelo Santiago de Sousa ◽  
Sebastião Simões Cunha ◽  
Alexandre Brandão Ramos

Sliding mode control (SMC) is a widely used control law for quadrotor regulation and tracking control problems. The purpose of this article is to solve the tracking problem of quadrotors using a relatively novel nonlinear control law based on SMC that makes use of a conditional integrator. It is demonstrated by a motivation example that the proposed control law can improve the transient response and chattering shortcomings of the previous approaches of similar SMC based controllers. The adopted Newton–Euler model of quadrotor dynamics and controller design is treated separately in two subsystems: attitude and position control loops. The stability of the control technique is demonstrated by Lyapunov’s analysis and the effectiveness and performance of the proposed method are compared with a similar integral law, also based on SMC, and validated by tracking control problems using numerical simulations. Simulations were developed in the presence of external disturbances in order to evaluate the controller robustness. The effectiveness of the proposed controller was verified by performance indexes, demonstrating less accumulated tracking errors and control activity and improvement in the transient response and disturbance rejection when compared to a conventional integrator sliding mode controller.


2013 ◽  
Vol 2013 ◽  
pp. 1-16 ◽  
Author(s):  
Ji Min Lee ◽  
Sung Hwan Park ◽  
Jong Shik Kim

A robust control scheme is proposed for the position control of the electrohydrostatic actuator (EHA) when considering hardware saturation, load disturbance, and lumped system uncertainties and nonlinearities. To reduce overshoot due to a saturation of electric motor and to realize robustness against load disturbance and lumped system uncertainties such as varying parameters and modeling error, this paper proposes an adaptive antiwindup PID sliding mode scheme as a robust position controller for the EHA system. An optimal PID controller and an optimal anti-windup PID controller are also designed to compare control performance. An EHA prototype is developed, carrying out system modeling and parameter identification in designing the position controller. The simply identified linear model serves as the basis for the design of the position controllers, while the robustness of the control systems is compared by experiments. The adaptive anti-windup PID sliding mode controller has been found to have the desired performance and become robust against hardware saturation, load disturbance, and lumped system uncertainties and nonlinearities.


2009 ◽  
Vol 22 (2) ◽  
pp. 183-195
Author(s):  
Ján Vittek ◽  
Vladimir Vavrús ◽  
Jozef Buday ◽  
Jozef Kuchta

The paper presents design and verification of Forced Dynamics Control of an actuator with linear permanent magnet synchronous motor. This control method is a relatively new one and offers an accurate realization of a dynamic speed response, which can be selected for given application by the user. In addition to this, the angle between stator current vector and moving part flux vector is maintained mutually perpendicular as it is under conventional vector control. To achieve prescribed speed response derived control law requires estimation of an external force, which is obtained from the set of observers. The first observer works in pseudo-sliding mode and observes speed of moving part while the second one has filtering effect for elimination of the previous one chattering. The overall control system is verified by simulations and experimentally. Preliminary experiments confirmed that the moving part speed response follows the prescribed one fairly closely.


Author(s):  
Chuan Lian Zhang ◽  
Kil To Chong

<span>In this paper, one nonlinear hybrid controller, based on backstepping and sliding mode, was developed and applied to a quadrotor for waypoint navigation application. After dynamics modeling, the whole quadrotor dynamics system could be divided into two subsystems: rotational system and translational system. Backstepping control law was derived for attitude control whereas sliding mode control law was developed for position control. By using Lyapunov theory and satisfying sliding stable rules, the convergence of system could be guaranteed. A nonlinear equation was proposed to solve the under-actuated problem. To validate the effectiveness of proposed nonlinear hybrid controller, waypoint navigation simulation was performed on the nonlinear hybrid controller. Results showed that the nonlinear hybrid controller finished waypoint navigation successfully.</span>


1998 ◽  
Vol 123 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Mooncheol Won ◽  
J. K. Hedrick

This paper presents a discrete-time adaptive sliding control method for SISO nonlinear systems with a bounded disturbance or unmodeled dynamics. Control and adaptation laws considering input saturation are obtained from approximately discretized nonlinear systems. The developed disturbance adaptation or estimation law is in a discrete-time form, and differs from that of conventional adaptive sliding mode control. The closed-loop poles of the feedback linearized sliding surface and the adaptation error dynamics can easily be placed. It can be shown that the adaptation error dynamics can be decoupled from sliding surface dynamics using the proposed scheme. The proposed control law is applied to speed tracking control of an automatic engine subject to unknown external loads. Simulation and experimental results verify the advantages of the proposed control law.


Author(s):  
Vo Anh Tuan ◽  
Hee-Jun Kang

In this study, a new finite time control method is suggested for robotic manipulators based on nonsingular fast terminal sliding variables and the adaptive super-twisting method. First, to avoid the singularity drawback and achieve the finite time convergence of positional errors with a fast transient response rate, nonsingular fast terminal sliding variables are constructed in the position errors' state space. Next, adaptive tuning laws based on the super-twisting scheme are presented for the switching control law of terminal sliding mode control (TSMC) so that a continuous control law is extended to reject the effects of chattering behavior. Finally, a new finite time control method ensures that sliding motion will take place, regardless of the effects of the perturbations and uncertainties on the robot system. Accordingly, the stabilization and robustness of the suggested control system can be guaranteed with high-precision performance. The robustness issue and the finite time convergence of the suggested system are totally confirmed by the Lyapunov stability principle. In simulation studies, the experimental results exhibit the effectiveness and viability of our proposed scheme for joint position tracking control of a 3DOF PUMA560 robot.


Robotica ◽  
2019 ◽  
Vol 38 (9) ◽  
pp. 1642-1664 ◽  
Author(s):  
Ali Fayazi ◽  
Naser Pariz ◽  
Ali Karimpour ◽  
V. Feliu-Batlle ◽  
S. Hassan HosseinNia

SUMMARYThis paper proposes an adaptive robust impedance control for a single-link flexible arm when it encounters an environment at an unknown intermediate point. First, the intermediate collision point is estimated using a collision detection algorithm. The controller, then, switches from free to constrained motion mode. In the unconstrained motion mode, the exerted force to environment is nearly zero. Thus, the reference trajectory is a prescribed desired trajectory in position control. In the constrained motion mode, the reference trajectory is determined by the desired target dynamic impedance. The simulation results demonstrate the efficiency of proposed control scheme.


Sign in / Sign up

Export Citation Format

Share Document