Numerical Simulation Research on the Heating Process of Air by Waste Heat

2014 ◽  
Vol 694 ◽  
pp. 260-265
Author(s):  
Zi Fang Wang ◽  
Jian Li Liu ◽  
Lian Sheng Liu ◽  
Ye Bin Yin ◽  
Jin Xiang Wu ◽  
...  

Flue gas of boiler is a kind of great potential waste heat resource. Relatively high temperature of exhaust has caused a vast waste of energy and serious environmental thermal pollutions. To make a full and reasonable use of the heat resource, a simplified single-tube heat exchanger is introduced in this paper. Dry air and wet air with different temperatures transfer heat with flue gas in the same model. And the results show that heat near the inner wall exchanges more violently than any other space in the heater. For dry air, the higher temperature of the air enters into the heater, the lower heat transfer effect of the heater. Heat exchange effect of the wet air with 0.03 mole fraction of water is more higher than that of dry air in this model.

Author(s):  
Soheil Soleimanikutanaei ◽  
Esmaiil Ghasemisahebi ◽  
Cheng-Xian Lin ◽  
Dexin Wang

In this study Transport Membrane Condenser (TMC), a new waste heat and water recovery technology based on a nanoporous ceramic membrane vapor separation mechanism has been studied for waste heat and water recovery in power plant application. TMC is able to extract condensate pure water from the flue gas in the presence of other non-condensable gases (i.e. CO2, O2 and N2). The effects of mass flow rate of flue gas and water vapor content of flow on the heat transfer and condensation rate of a TMC shell and tube heat exchanger have been studied numerically. A single phase multi-component model is used to assess the capability of single stage TMC heat exchangers in terms of waste heat and water recovery at various inlet conditions. Numerical simulation has been performed using ANSYS-FLUENT software and the condensation rate model has been implemented applying User Define Function.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4420
Author(s):  
Michalina Kurkus-Gruszecka ◽  
Piotr Krawczyk ◽  
Janusz Lewandowski

Currently, energy policy is associated with the increase in the share of renewable sources in systemic energy production. Due to this trend, coal-fired power units must increase their work flexibility. Adapting a coal power plant to work with a lower load often causes the issue of maintaining the temperature before the selective catalytic reduction (SCR) installation at a sufficiently high level. This paper presents a CFD analysis of the mixing area of two flue gas streams before the SCR installation with various methods for mixing flue gas streams. The novelty of the work is mixing the flue gas streams of different temperatures using a flap shape developed by the authors. A series of numerical simulations were performed to develop the location and method of introducing the higher temperature gas, obtaining a uniform distribution of the exhaust gas temperature. The simulation scheme was applied to a series of geometrical modifications of the boundary conditions. The tested solution using only a single, straight flap in the flue gas duct allows the amplitude to be reduced from 298 K to 144 K. As a result of the research, a mixing flap design was developed to reduce the initial temperature amplitude of the flue gas streams from 298 K to 43 K.


2017 ◽  
Author(s):  
Roman Gášpár ◽  
Stanislav Souček

A cogeneration unit is a device for the production of electricity and heat. Waste heat is used in the cogeneration (Combine Heat and Power or CHP) process. This process increases the efficiency of the whole cogeneration unit system. One of the most important parts of a cogeneration unit is the exhaust heat exchanger, where waste heat is recovered. The objective of this applied research is to examine the properties of a shell-and-tube heat exchanger for a CHP unit of up to 200 kW manufactured by TEDOM a.s. The computations presented in this article are the results of computations where the influence of the composition of flue gas entering the computation in comparison with measured quantities were examined. The article contains a comparison of the influence of the flue gas, represented by CO2, N2 and air as an ideal gas. The results include an analysis of the character of the flow in the heat exchanger, especially in the input volume of the flue gas, where, apart from the influence of the flue gas properties, the influence of the construction on the flue gas mass flow rate distribution into the tubes was also examined. The advantage of this extensive computation lies in the possibility of a detailed analysis of particular parts of the heat exchanger as well as the possibility of detecting potential construction imperfections, which could negatively influence heat transfer and hence the total efficiency of the heat exchanger and the CHP unit.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 844
Author(s):  
Robertas Poškas ◽  
Arūnas Sirvydas ◽  
Vladislavas Kulkovas ◽  
Povilas Poškas

Waste heat recovery from flue gas based on water vapor condensation is an important issue as the waste heat recovery significantly increases the efficiency of the thermal power units. General principles for designing of this type of heat exchangers are known rather well; however, investigations of the local characteristics necessary for the optimization of those heat exchangers are very limited. Investigations of water vapor condensation from biofuel flue gas in the model of a vertical condensing heat exchanger were performed without and with water injection into a calorimetric tube. During the base-case investigations, no water was injected into the calorimetric tube. The results showed that the humidity and the temperature of inlet flue gas have a significant effect on the local and average heat transfer. For some regimes, the initial part of the condensing heat exchanger was not effective in terms of heat transfer because there the flue gas was cooled by convection until its temperature reached the dew point temperature. The results also showed that, at higher Reynolds numbers, there was an increase in the length of the convection prevailing region. After that region, a sudden increase was observed in heat transfer due to water vapor condensation.


1970 ◽  
Vol 17 (1) ◽  
pp. 38-42
Author(s):  
Anna BIEDUNKIEWICZ ◽  
Pawel FIGIEL ◽  
Marta SABARA

The results of investigations on pyrolysis and oxidation of pure polyacrylonitrile (PAN) and its mixture with N,N-dimethylformamide (DMF) under non-isothermal conditions at linear change of samples temperature in time are presented. In each case process proceeded in different way. During pyrolysis of pure PAN the material containing mainly the product after PAN cyclization was obtained, while pyrolysis of PAN+DMF mixture gave the product after cyclization and stabilization. Under conditions of measurements, in both temperature ranges, series of gaseous products were formed.For the PAN-DMF system measurements at different samples heating rates were performed. The obtained results were in accordance with the kinetics of heterogeneous processes theory. The process rates in stages increased along with the temperature increase, and TG, DTG and HF function curves were shifted into higher temperature range. This means that the process of pyrolysis and oxidation of PAN in dry air can be carried out in a controlled way.http://dx.doi.org/10.5755/j01.ms.17.1.246


2019 ◽  
Vol 150 ◽  
pp. 200-209 ◽  
Author(s):  
Min Yan ◽  
Chunyuan Ma ◽  
Qiuwan Shen ◽  
Zhanlong Song ◽  
Jingcai Chang

2012 ◽  
Vol 58 (4) ◽  
pp. 10-22 ◽  
Author(s):  
Martin Reli ◽  
Kamila Kočí ◽  
Vlastimil Matějka ◽  
Pavel Kovář ◽  
Lucie Obalová

Abstract The kaolinite/TiO2 composite (60 wt% of TiO2) was prepared by thermal hydrolysis of a raw kaolin suspension in titanyl sulphate and calcined at different temperatures (600, 650 and 700°C) and for different times (1, 2 and 3 h). The obtained samples were characterized by XRPD, N2 physical adsorption and SEM, and tested for photocatalytic reduction of CO2. The different calcination conditions did not influence TiO2 phase composition, only slightly changed the specific surface area, and significantly affected crystallite size of kaolinite/TiO2 composite. A higher temperature and longer duration of calcination lead to higher crystallinity of the powder. The photocatalytic results showed that the crystallite size determined the efficiency of kaolinite/TiO2 photocatalysts.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2487 ◽  
Author(s):  
Heng Chen ◽  
Zhen Qi ◽  
Qiao Chen ◽  
Yunyun Wu ◽  
Gang Xu ◽  
...  

A conceptual high-back pressure (HBP) heating system cooperating raw coal pre-drying for combined heat and power (CHP) was proposed to improve the performance of the HBP-CHP unit. In the new design, besides of heating the supply-water of the heating network, a portion of the exhaust steam from the turbine is employed to desiccate the raw coal prior to the coal pulverizer, which further recovers the waste heat of the exhaust steam and contributes to raising the overall efficiency of the unit. Thermodynamic and economic analyzes were conducted based on a typical 300 MW coal-fired HBP-CHP unit with the application of the modified configuration. The results showed that the power generation thermal efficiency promotion of the unit reaches 1.7% (absolute value) owing to suggested retrofitting, and meanwhile, the power generation standard coal consumption rate is diminished by 5.8 g/kWh. Due to the raw coal pre-drying, the energy loss of the exhaust flue gas of the boiler is reduced by 19.1% and the boiler efficiency increases from 92.7% to 95.4%. The impacts of the water content of the dried coal and the unit heating capacity on the energy-saving effect of the new concept were also examined.


Sign in / Sign up

Export Citation Format

Share Document