Reasoning of the Use of TVR-IM Electric Drives of Closed-Loop Type by the Angular Velocity Observer for Solving Technological Problems

2014 ◽  
Vol 698 ◽  
pp. 131-135 ◽  
Author(s):  
V. Timoshkin ◽  
A. Glazyrin ◽  
L. Kozlova

This article describes the main advantages and disadvantages of electric drive TVR-IM compared with a frequency converter. The necessity to use electric drives TVR-IM and angular velocity observers to solve technological problems is substantiated. Promising directions in the field of constructing closed-loop by the speed observer systems TVR-IM are shown.

Author(s):  
Sergey Grigoryevich Cherniy ◽  
Aleksandr Sergeevich Sobolev ◽  
Pavel Andreevich Erofeev

The paper describes a variable frequency drive which consists of two elements: an electric drive (synchronous or asynchronous electric drives, that is, drives powered by alternating current are used in capacity of it), and a frequency converter able to control the amplitude and frequency of the voltage supplied to the drive. It becomes possible to control the speed of rotation of the electric motor and the torque on its shaft. The most optimal energy efficiency when using compressor units is achieved under the operating mode when its average daily load factor makes at least 85%. Under the mentioned operating mode fluctuations during the compressed air consumption will be minimal, and the most stable operation of the compressor at its rated nominal power is ensured. In practice, no more than 15% of all the industrial compressors are operated in such operating mode. For 85% of the compressor units the question of improving energy efficiency by regulating its capacity remains open. The method of capacity regulation by using a frequency converter is currently the most optimal and perfect, because adjusting the parameters of the electric drive in this way, the most accurate regulation of the compressed air pressure is provided, which allows reducing the energy consumption in the compressed air injection process, as well as extending the service life of the equipment used. There has been considered a device with frequency control of a compressor unit, debugging of which was carried out on the basis of a mathematical model, which allows choosing the most optimal parameters for frequency control of an electric drive of a compressor unit in order to increase energy efficiency. The analysis of all the advantages and disadvantages of frequency regulation is being carried out, as well as a comparative analysis for selecting the optimal frequency converter in terms of the import substitution


Vestnik IGEU ◽  
2019 ◽  
pp. 49-61 ◽  
Author(s):  
V.N. Meshcheryakov ◽  
A.S. Belousov

High overload capacity and ability to control speed in a wide range are important requirements for modern electric drives. Introduction of a low-power adjustable two-phase electric drive with these properties into me-chanical devices is limited by the frequency converter function to convert a three-phase network into a two-phase one when the unit power of such mechanisms increases. Previous studies have shown that it is possible to use a standard frequency converter with a three-phase bridge voltage inverter applying a new control algorithm based on space-vector PWM. When PWM is used, the switching frequency of the key inverter elements remains quite high, strictly specified, non-amenable to reduction without degrading the harmonic composition. The goal of this work is to develop an algorithm for two-phase electric drive control that would reduce the number of switching operations of the switch elements of a three-phase inverter with-out increasing the deviations of the instantaneous values of the phase currents from the reference sine curve. The study employed provisions of the theory of automatic control, the theory of electric drive and methods of mathematical modeling. The simulation object was the control system of a two-phase motor; the elements of the Matlab Simulink software package were used. An algorithm has been proposed for operating a three-phase inverter of a two-phase electric drive system. The difference of the algorithm from the well-known control system of a standard bridge inverter with space vector PWM consists in using phase current control relays and dividing the period of sinusoidal phase currents into four sections ensuring a decrease in the number of switching operations of the inverter switch elements when the maximum instantaneous deviations of current values from a sinusoidal reference are equal, the starting torque of the motor is stabilized and the speed control is smooth. The results show that with an equal maximum deviation of the instantaneous current values from a given sinusoidal value, the number of switching operations of the inverter switch elements in the proposed system is smaller than in the known analogues. The electric drive system ensures the start of a two-phase motor with stabilization of the starting torque under increased load. The considered system of variable frequency control with current control relays can be used for two-phase electric drives of mechanical devices and household electric appliances and is promising as a substitute for less cost-effective single-phase and capacitor motors.


Author(s):  
Bogdan Y. Vasilev

<p>In the paper describes the AC electric drive, which consists of the induction motor and the semiconductor converter. Structure of the frequency converter, which includes a three-phase bridge inverter on based fully controlled transistors, is considered. The algorithm of pulse width modulation, which used in the majority of the electric drives, is discussed. The characteristics and shortcomings of the algorithm is shows. Algorithmically methods to improve the efficiency of the inverter – promodulation control signal. The efficiency of this method in different variations is given. The level electromagnetic compatibility inverter and efficiency various control algorithms are analyzed. The conclusions about feasibility of using the method promodulation.</p>


2020 ◽  
Vol 220 ◽  
pp. 01069
Author(s):  
Rishat Ganiev

The article deals with the problems of increasing the multi-engine electric drive energy efficiency on the example of the cropped cord production line in manufacture of tires. There are requirements for line electric drives that can have an impact both each other and the overall power grid in the mode of technological braking, as well as the requirements for the availability of protection functions and mutual coordination with the mains supply. To solve this problem, options have been developed to build reversible frequency converters on fully controlled (locked) keys as part of frequency-regulated technological electric drives in the production of cord for car tires with energy recovery. The construction of the reversible frequency converter with the use of autonomous voltage inverters, as well as the results of computer simulations in the reactor and non-reactor circuits of reversible frequency converters in the composition of multi-motor electric drives with a total DC bus are shown.


2018 ◽  
Vol 41 ◽  
pp. 03006
Author(s):  
Ziyodullo Eshmurodov ◽  
Folib Holboiv

The article shows the peculiarity of the system of technological automation of the newest Simatic S7-1500 PLCs, for electric drives of hoisting transport machines, the analysis of control systems for electric drives of operating mine hoisting machines of mining complexes. One of the main ways to increase the energy efficiency of MLM is to replace old asynchronous electric motors with a phase rotor with squirrel cage induction motors designed for operation in a frequency-controlled electric drive. The introduction of a frequency converter and an electric drive control system, which together allow the recovery of electricity in the supply network in the mode of generator braking. Thus, the system for automated control of the mine hoisting machine based on the Simatic S7-1500 PLC, with the developed control algorithm, is an integrated energy-efficient control system, which it is advisable to use in the management of the SHM.


2021 ◽  
pp. 195-200
Author(s):  
С.П. Черный ◽  
 А.В. Бузикаева ◽  
А.К. Тимофеев

Данная работа посвящена моделированию интеллектуальной системы управления электроприводом якорной лебедки с применением теории нечетких множеств. Был приведен анализ существующих систем управления электроприводами якорно-швартовных узлов основанных на различных традиционных схемах регулирования, показаны достоинства и недостатки традиционных систем управления, а также выявлены основные возмущения, носящие существенно-недетерминированный характер. Процедуры интеллектуального управления в реализуемой модели системы управления электроприводом реализуются нечетким регулятором. Интеллектуальная система управления в своей основе имеет нечеткий регулятор с алгоритмом вывода Сугено, формализация входных сигналов по ошибке осуществляется двумя лингвистическими переменными. Кроме того, показано преимущество предлагаемого подхода при построении систем управления электроприводами якорно-швартовных узлов на основании базовых показателей качества. This paper is devoted to the modeling of an intelligent control system for the electric drive of an anchor winch using the theory of fuzzy sets. The analysis of the existing control systems for electric drives of anchor and mooring units based on various traditional control schemes was given, the advantages and disadvantages of traditional control systems were shown, and the main disturbances of a significantly non-deterministic nature were identified. Intelligent control procedures in the implemented model of the electric drive control system are implemented by a fuzzy controller. The intelligent control system is based on a fuzzy controller with the Sugeno output algorithm, the formalization of input signals by error is carried out by two linguistic variables. In addition, the advantage of the proposed approach in the construction of control systems for electric drives of anchor and mooring units on the basis of basic quality indicators is shown.


Author(s):  
Ilya Fedotov ◽  
Vyacheslav Tikhonov

The article deals with investigation of electromechanical and energetic characteristics of traction electric drive with vector systems of direct torque control. As a controlled object the traction asynchronous motor ДТА-1У1, which is used to drive the trolley-bus is considered. At the present time the usage of traction asynchronous electric drives for town transport is relevant. Due to development of power electronic devices and microprocessor-based control systems it became possible to replace DC electric drives with electric drives with asynchronous motors. The article contains brief description of two different types of control systems: field-oriented control (FOC) and direct torque control (DTC). Principles of work for both systems are considered and the main advantages and disadvantages associated with the use of these systems are pointed out. The models of both systems for traction asynchronous electric drive, built in modeling environment MATLAB/Simulink, are given in this article for further comparative analysis. As the main quality factor of control total harmonic distortion (THD) is used.


Author(s):  
Bogdan Y. Vasilev

<p>In the paper describes the AC electric drive, which consists of the induction motor and the semiconductor converter. Structure of the frequency converter, which includes a three-phase bridge inverter on based fully controlled transistors, is considered. The algorithm of pulse width modulation, which used in the majority of the electric drives, is discussed. The characteristics and shortcomings of the algorithm is shows. Algorithmically methods to improve the efficiency of the inverter – promodulation control signal. The efficiency of this method in different variations is given. The level electromagnetic compatibility inverter and efficiency various control algorithms are analyzed. The conclusions about feasibility of using the method promodulation.</p>


2020 ◽  
pp. 99-107
Author(s):  
Erdal Sehirli

This paper presents the comparison of LED driver topologies that include SEPIC, CUK and FLYBACK DC-DC converters. Both topologies are designed for 8W power and operated in discontinuous conduction mode (DCM) with 88 kHz switching frequency. Furthermore, inductors of SEPIC and CUK converters are wounded as coupled. Applications are realized by using SG3524 integrated circuit for open loop and PIC16F877 microcontroller for closed loop. Besides, ACS712 current sensor used to limit maximum LED current for closed loop applications. Finally, SEPIC, CUK and FLYBACK DC-DC LED drivers are compared with respect to LED current, LED voltage, input voltage and current. Also, advantages and disadvantages of all topologies are concluded.


Sign in / Sign up

Export Citation Format

Share Document