Comparing Cooling Energy between Existing Air-Conditioning System and Proposed Design System

2014 ◽  
Vol 699 ◽  
pp. 834-839
Author(s):  
M.M. Syafiq Syazwan ◽  
M.Z.M. Yusof ◽  
C.K. Chang ◽  
M.D. Amir Abdullah

Air-conditioning (AC) system is typically used to remove the sensible and latent heat loads in buildings. It provides cool and dehumidified air to meet the occupants comfort and good indoor air quality (IAQ). Improper design and analysis of AC process resulted in high cooling energy and unsatisfied indoor humidity level in tropical climate. The objective of this study is to identify the cooling energy in hotel restaurant by comparing the design with proper fresh air ventilation design. The hotel restaurant was designed with primary air unit (PAU) and air handling unit (AHU) as to remove sensible and latent loads. The performance of the AC system has been monitored and analysed using psychrometric chart. For the AC air side system, 296.2 kW of cooling energy was used in standard operation. An alternative design was proposed for the said hotel restaurant employing only one AHU, with a cooling capacity of 165.9 kW which was 43 % lower than the existing system. The difference in temperature, humidity ratio and air flow rate influenced the cooling energy for AC system.

2018 ◽  
Vol 225 ◽  
pp. 04016 ◽  
Author(s):  
Azizuddin Abd Aziz ◽  
Daisuke Sumiyoshi ◽  
Yasunori Akashi

The use of conventional air-conditioning system in tropical climate is ineffective to reduce the humidity. In a typical application, the indoor temperature has to be overcooled to decrease the humidity which has an inherent effect of high energy consumption. The introduction of dual air handling unit (AHU) is the answer to high humidity environment. Each AHU is tasked to control the parameter of temperature and humidity respectively according to the desired value. In this paper, the objective is to design the procedure of sizing the dual AHU so that the control system could run efficiently. Basically, eight (8) steps are necessary to size the dual AHU system and the procedure requires sequential manner. Namely, the design process are indoor design condition, fresh air flow, outdoor design condition, room cooling load, capacity of both AHUs, supply air temperature of second AHU, supply air temperature of first AHU and the enthalpy of both AHUs. The design procedure also requires a psychrometric chart to indicate the air thermal condition throughout the cycle of the air-conditioning system. In conclusion, the proposed design procedure is simple yet effective for the application of dual AHU system to handle the excessive latent heat environment.


Author(s):  
Yilin Du ◽  
Jan Muehlbauer ◽  
Jiazhen Ling ◽  
Vikrant Aute ◽  
Yunho Hwang ◽  
...  

A rechargeable personal air-conditioning (RPAC) device was developed to provide an improved thermal comfort level for individuals in inadequately cooled environments. This device is a battery powered air-conditioning system with the phase change material (PCM) for heat storage. The condenser heat is stored in the PCM during the cooling operation and is discharged while the battery is charged by using the vapor compression cycle as a thermosiphon loop. The conditioned air is discharged towards a single person through adjustable nozzle. The main focus of the current research was on the development of the cooling system. A 100 W cooling capacity prototype was designed, built, and tested. The cooling capacity of the vapor compression cycle measured was 165.6 W. The PCM was recharged in nearly 8 hours under thermosiphon mode. When this device is used in the controlled built environment, the thermostat setting can be increased so that building air conditioning energy can be saved by about 5–10%.


Author(s):  
Y.I. Babenkov ◽  
◽  
A.I. Ozersky ◽  
V.V. Romanov ◽  
G.A Galka ◽  
...  

The article is devoted to the issue of designing an air conditioning system (SСA) of the cabin of an agricultural machine to create comfortable conditions and ensure good health of the driver. The methodology for determining heat inflows and moisture inflows into the cabin is shown. The required cooling capacity of hard currency is calculated using the i-d diagram.


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1927 ◽  
Author(s):  
Dandong Wang ◽  
Binbin Yu ◽  
Junye Shi ◽  
Jiangping Chen

CO2 (GWP = 1) is considered as a promising natural alternative refrigerant to HFC-134a in mobile air conditioning (MAC) applications. The objective of this study is to investigate the cooling performance characteristics of a CO2 MAC system. A prototype CO2 MAC system, consisting of a CO2 electrical compressor, CO2 parallel flow microchannel heat exchangers, and an electrical expansion valve, was developed and tested. Factor analysis experiments were conducted to reveal the effect of outdoor temperature on the cooling performance of this CO2 MAC system. Compared with a conventional R134a MAC system, the prototype CO2 MAC system achieved comparable cooling capacity, but had COP reductions of 26% and 10% at 27 °C and 45 °C outdoor conditions, respectively. In addition, based on refrigerant properties, theoretical cycle analysis was done to reveal the impact of evaporator, gas cooler and compressor, on the system cooling performance. It is concluded that the increase of overall compressor efficiency or the decrease of gas cooler approaching temperature could greatly improve the COP of this CO2 MAC system.


2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Yousuf Alhendal ◽  
Abdalla Gomaa ◽  
Gamal Bedair ◽  
Abdulrahim Kalendar

The energy and exergy of low-global warming potential (GWP) refrigerants were investigated experimentally and theoretically. Refrigerants with a modest GWP100 of  ≤ 150 can be sufficient for bringing down emissions which were concerned for the automotive air-conditioning system. Three types of low-GWP refrigerants, R152a, R1234yf, and R1234ze(E), were examined with particular reference to the current high-GWP of R134a. The effect of different evaporating and condensing temperatures in addition to compressor speed was considered. The purpose was to bring a clear view of the performance characteristics of possible environment friendly alternatives of R134a. The analysis was carried out with compressor power, cooling capacity, coefficient of performance, exergy destruction, and exergy efficiency. It was noted that the total exergy destruction of R1234yf was reduced by 15% compared to that of R134a. The refrigerant R1234ze(E) has the highest energetic and exergetic performance compared with the other investigated refrigerants.


1993 ◽  
Vol 115 (4) ◽  
pp. 200-205 ◽  
Author(s):  
V. C. Mei ◽  
F. C. Chen ◽  
B. Mathiprakasam ◽  
P. Heenan

An analytical study was conducted to determine the feasibility of employing solar energy assisted thermoelectric (TE) cooling technology in automobile air conditioners. The study addressed two key issues—power requirements and availability of thermoelectric materials. In this paper, a mathematical model was developed to predict the performance of TE air conditioners and to analyze power consumption. Results show that the power required to deliver a cooling capacity of 4 kW (13,680 Btu/h) in a 38°C (100°F) environment will be 9.5 kW electric. Current TE modules suitable for air conditioning are made of bismuth telluride. The element tellurium is expected to be in short supply if TE cooling is widely implemented for auto air conditioning; some options available in this regard were studied and presented in this paper. The photovoltaic (PV) cells, assumed to cover the roof area of a compact car, can only generate about 225 W. However, this is more than enough to power a fan to provide air ventilation to the car interior, which significantly reduces the peak cooling load when the car is parked in bright sunlight.


Author(s):  
Akira Kaneko ◽  
Masafumi Katsuta ◽  
Takahiro Oshiro ◽  
Sangchul Bae ◽  
Shunji Komatsu ◽  
...  

In previous research, we have been focusing on the performance of the each element heat transfer and hydraulic performance of refrigeration cycle. Experimental investigations have been repeated several times, and finally, we have substantial database including the effect of lubricant oil. Moreover, the maldistribution of two-phase in an evaporator can be also predicted from the experimental database. Under these circumstances, this study is intended to effectively put the construction of an automotive CO2 air conditioning system into practical design use through the simulation using the above-mentioned database. This paper describes the refrigeration cycle performance prediction of each element (e.g., an evaporator, a gas-cooler, and so on) by a simulation using substantial database and various available correlations proposed by us and several other researchers. In the performance prediction model of heat exchangers, local heat transfer and flow characteristics are considered and, in addition, the effects of lubricant oil on heat transfer and pressure drop are duly considered. The comparison is also made between simulation results and bench test results using a real automotive air conditioning system. Finally, the developed simulation method can predict the cooling capacity successfully within ±10% for A/C system simulation. By incorporating the lubricant oil effect, the simulation results are improved to ±5% and ±15% for the cooling capacity and pressure drop for evaporator simulation, respectively.


Author(s):  
A. Anthony Adeyanju ◽  
K. Manohar

Thermoelectric devices use the Peltier effect which creates a heat flux between the junctions of two different types of materials. The thermoelectric module also referred to as a heat pump transfers heat from one side to the other when a DC current is applied. This study carried out the theoretical and experimental analysis of a thermoelectric air conditioning system. A prototype thermoelectric air conditioner of 286 W cooling capacity was built and a testing enclosure made from plywood and Styrofoam was also constructed in order to validate the theoretical result with an experimentation. It was discovered that thermoelectric air conditioning took 4 minutes to reach its desired temperature of 22℃ whereas the standard air conditioning system (Refrigeration Cycle) took 20 minutes to cool to a room temperature. Economically it was also discovered that thermoelectric air conditioning system is 50% cheaper than the refrigeration cycle air conditioning systems. The thermoelectric air conditioner has cheaper maintenance and greater estimated life span of 7 years more than the refrigeration air conditioner. This is because the air conditioner that operates on the refrigeration cycle uses a rotating compressor while the thermoelectric air conditioner uses thermometric module.


2019 ◽  
pp. 49-53
Author(s):  
Євген Іванович Трушляков ◽  
Микола Іванович Радченко ◽  
Андрій Миколайович Радченко ◽  
Сергій Георгійович Фордуй ◽  
Сергій Анатолійович Кантор ◽  
...  

Maintaining the operation of refrigeration compressors in nominal or close modes by selecting a rational design thermal load and distributing it in response to the behavior of the current thermal load according to the current climatic conditions is one of the promising reserves for improving the energy efficiency of air conditioning systems, which implementation ensures maximum or close to it in the annual cooling production according to air conditioning duties. In general case, the total range of current thermal loads of any air-conditioning system includes a range of unstable loads caused by precooling of ambient air with significant fluctuations in the cooling capacity according to current climatic conditions, and a range of relatively stable cooling capacity expended for further lowering the air temperature from a certain threshold temperature to the final outlet temperature. If a range of stable thermal load can be provided within operating a conventional compressor in a mode close to nominal, then precooling the ambient air with significant fluctuations in thermal load requires adjusting the cooling capacity by using a variable speed compressor or using the excess of heat accumulated at reduced load. Such a stage principle of cooling ensures the operation of refrigerating machines matching the behavior of current thermal loads of any air-conditioning system, whether the central air conditioning system with ambient air procession in the central air conditioner or its combination with the local indoors recirculation air conditioning systems in the air-conditioning system. in essence, as combinations of subsystems – precooling of ambient air with the regulation of cooling capacity and subsequent cooling air to the mouth of the set point temperature under relatively stable thermal load.


Sign in / Sign up

Export Citation Format

Share Document