A Rapid and Sensitive Chemiluminescent Immunoassay of Bisphenol a with NSP-SA-NHS-Labeled

2014 ◽  
Vol 707 ◽  
pp. 7-11
Author(s):  
Fan Fan Yang ◽  
Li Xin Zhu ◽  
Long Xu ◽  
Ren Rong Liu ◽  
Yan Fan ◽  
...  

A novel chemiluminescence immunoassay (CLIA) of Bisphenol A (BPA) with the acridinium ester of NSP-SA-NHS-labeled has been developed. In this study, BVA and NSP-SA-NHS had been coupled with BSA, the UV spectrum results indicated the conjugates which were successfully synthesized. Basing on these luminescence data the inhibition curve of BPA was established, then the linear arrang of the curve was between 0.4 ng/ml and 5 ng/ml, the 50% inhibitory concentration (IC50) was 2.3ng/ml, the lowest limit of detection was 0.1ng/ml, which showed it’s an efficient and highly sensitive method.

Author(s):  
Shuang Li ◽  
Danfeng Yang ◽  
Fengchun Chen ◽  
Fei Liu ◽  
Fang Liu ◽  
...  

Micromachines ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 41 ◽  
Author(s):  
Haoyue Luo ◽  
Xiaogang Lin ◽  
Zhijia Peng ◽  
Min Song ◽  
Lifeng Jin

Bisphenol A (BPA) is an endocrine disruptor that may lead to reproductive disorder, heart disease, and diabetes. Infants and young children are likely to be vulnerable to the effects of BPA. At present, the detection methods of BPA are complicated to operate and require expensive instruments. Therefore, it is quite vital to develop a simple, rapid, and highly sensitive method to detect BPA in different samples. In this study, we have designed a rapid and highly sensitive biosensor based on an effective self-assembled monolayer (SAM) and alternating current (AC) electrokinetics capacitive sensing method, which successfully detected BPA at nanomolar levels with only one minute. The developed biosensor demonstrates a detection of BPA ranging from 0.028 μg/mL to 280 μg/mL with a limit of detection (LOD) down to 0.028 μg/mL in the samples. The developed biosensor exhibited great potential as a portable BPA biosensor, and further development of this biosensor may also be useful in the detection of other small biochemical molecules.


2020 ◽  
Vol 16 (6) ◽  
pp. 744-752
Author(s):  
Kuan Luo ◽  
Xinyu Jiang

Background: Diabetes Mellitus (DM) is a major public metabolic disease that influences 366 million people in the world in 2011, and this number is predicted to rise to 552 million in 2030. DM is clinically diagnosed by a fasting blood glucose that is equal or greater than 7 mM. Therefore, the development of effective glucose biosensor has attracted extensive attention worldwide. Fluorescence- based strategies have sparked tremendous interest due to their rapid response, facile operation, and excellent sensitivity. Many fluorescent compounds have been employed for precise analysis of glucose, including quantum dots, noble metal nanoclusters, up-converting nanoparticles, organic dyes, and composite fluorescent microspheres. Silicon dot as promising quantum dots materials have received extensive attention, owing to their distinct advantages such as biocompatibility, low toxicity and high photostability. Methods: MnO2 nanosheets on the Si nanoparticles (NPs) surface serve as a quencher. Si NPs fluorescence can make a recovery by the addition of H2O2, which can reduce MnO2 to Mn2+, and the glucose can thus be monitored based on the enzymatic conversion of glucose by glucose oxidase to generate H2O2. Therefore, the glucose concentration can be derived by recording the fluorescence recovery spectra of the Si NPs. Results: This probe enabled selective detection of glucose with a linear range of 1-100 μg/mL and a limit of detection of 0.98 μg/mL. Compared with the commercial glucometer, this method showed favorable results and convincing reliability. Conclusion: We have developed a novel method based on MnO2 -nanosheet-modified Si NPs for rapid monitoring of blood glucose levels. By combining the highly sensitive H2O2/MnO2 reaction with the excellent photostability of Si NPs, a highly sensitive, selective, and cost-efficient sensing approach for glucose detection has been designed and applied to monitor glucose levels in human serum with satisfactory results.


Biosensors ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 192
Author(s):  
Bakhtiyar Qader ◽  
Issam Hussain ◽  
Mark Baron ◽  
Rebeca Jiménez-Pérez ◽  
Guzmán Gil-Ramírez ◽  
...  

Coumaphos is an organophosphorus compound used as insecticide and frequently used by beekeepers for the management of parasitic mites. The most important metabolite, chlorferron (CFN), has been identified in biological samples and foodstuff. The need to quickly identify the presence of typical metabolites, as an indication of interaction with coumaphos has driven the need to produce a highly sensitive electrochemical method for chlorferron analysis, based on molecularly imprinting polymers (MIP) technology. It showed irreversible behaviour with mixed diffusion/adsorption-controlled reactions at the electrode surface. A monoelectronic mechanism of reaction for oxidation has also been suggested. The linear range observed was from 0.158 to 75 µM. Median precision in terms of %RSD around 3% was also observed. For DPV, the limit of detection (LOD) and the limit of quantitation (LOQ) for the CFN-MIP were 0.158 µM and 0.48 µM, respectively. The obtained median % recovery was around 98%. The results were also validated to reference values obtained using GC-MS. Urine and human synthetic plasma spiked with CFN were used to demonstrate the usability of the method in biological samples, showing the potential for biomonitoring. The developed imprinted sensor showed maximum signal change less than 16.8% when related metabolites or pesticide were added to the mix, suggesting high selectivity of the MIP sensor toward CFN molecules. The results from in vitro metabolism of CMP analysed also demonstrates the potential for detection and quantification of CFN in environmental samples. The newly developed CFN-MIP sensor offers similar LoDs than chromatographic methods with shorter analysis time.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Guanhua Xun ◽  
Stephan Thomas Lane ◽  
Vassily Andrew Petrov ◽  
Brandon Elliott Pepa ◽  
Huimin Zhao

AbstractThe need for rapid, accurate, and scalable testing systems for COVID-19 diagnosis is clear and urgent. Here, we report a rapid Scalable and Portable Testing (SPOT) system consisting of a rapid, highly sensitive, and accurate assay and a battery-powered portable device for COVID-19 diagnosis. The SPOT assay comprises a one-pot reverse transcriptase-loop-mediated isothermal amplification (RT-LAMP) followed by PfAgo-based target sequence detection. It is capable of detecting the N gene and E gene in a multiplexed reaction with the limit of detection (LoD) of 0.44 copies/μL and 1.09 copies/μL, respectively, in SARS-CoV-2 virus-spiked saliva samples within 30 min. Moreover, the SPOT system is used to analyze 104 clinical saliva samples and identified 28/30 (93.3% sensitivity) SARS-CoV-2 positive samples (100% sensitivity if LoD is considered) and 73/74 (98.6% specificity) SARS-CoV-2 negative samples. This combination of speed, accuracy, sensitivity, and portability will enable high-volume, low-cost access to areas in need of urgent COVID-19 testing capabilities.


Biosensors ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 73
Author(s):  
Brian D. Henderson ◽  
David J. Kinahan ◽  
Jeanne Rio ◽  
Rohit Mishra ◽  
Damien King ◽  
...  

Within microfluidic technologies, the centrifugal microfluidic “Lab-on-a-Disc” (LoaD) platform offers great potential for use at the PoC and in low-resource settings due to its robustness and the ability to port and miniaturize ‘wet bench’ laboratory protocols. We present the combination of ‘event-triggered dissolvable film valves’ with a centrifugo-pneumatic siphon structure to enable control and timing, through changes in disc spin-speed, of the release and incubations of eight samples/reagents/wash buffers. Based on these microfluidic techniques, we integrated and automated a chemiluminescent immunoassay for detection of the CVD risk factor marker C-reactive protein displaying a limit of detection (LOD) of 44.87 ng mL−1 and limit of quantitation (LoQ) of 135.87 ng mL−1.


Nanoscale ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 3275-3284
Author(s):  
Huan Zhao ◽  
Qifeng Lin ◽  
Li Huang ◽  
Yunfeng Zhai ◽  
Yuan Liu ◽  
...  

Hydrogel microspheres sensitive to temperature as new potential signal enhancers and magnetic fluorescent nanoparticles as internal standards were used to establish a new CLIA method for the accurate diagnosis of cTnI in the human body.


2021 ◽  
Author(s):  
Rui Li ◽  
Yanan Sun ◽  
Lihua Jin ◽  
Xiaohong Qiao ◽  
Cong Li ◽  
...  

With the rapid development of point-of-care (POC) technologies, the improvement of sensitive method featured with fast analysis and affordable devices has become an emerging requirement for the practical application. In...


Sign in / Sign up

Export Citation Format

Share Document