Research on Control System of Large Capacity of Hollow Blow Molding Machine

2015 ◽  
Vol 713-715 ◽  
pp. 885-888
Author(s):  
Jian Huang ◽  
Wei Min Li ◽  
Guang Liang Lu

This paper elaborate the structure of parison wall thickness control system; choice hardware of the control system; study on the determination of the thickness control method and control points of parison wall; research on the formation of the parison wall thickness curve; summed up the development process of extruding plastic machine heating method on the basis of the plastic molding machinery development; analysis the various of heating methods; summed up the advantages and disadvantages of various heating methods; explore their advantages and disadvantages for providing reference.

2010 ◽  
Vol 136 ◽  
pp. 153-157
Author(s):  
Yu Hong Du ◽  
Xiu Ming Jiang ◽  
Xiu Ren Li

To solve the problem of detecting the permeability of the textile machinery, a dedicated test system has been developed based on the pressure difference measuring method. The established system has a number of advantages including simple, fast and accurate. The mathematical model of influencing factors for permeability is derived based on fluid theory, and the relationship of these parameters is achieved. Further investigations are directed towards the inherent characteristics of the control system. Based on the established model and measuring features, an information fusion based clustering control system is proposed to implement the measurement. Using this mechanical structure, a PID control system and a cluster control system have been developed. Simulation and experimental tests are carried out to examine the performance of the established system. It is noted that the clustering method has a high dynamic performance and control accuracy. This cluster fusion control method has been successfully utilized in powder metallurgy collar permeability testing.


Author(s):  
Guanjie Hu ◽  
Jianguo Guo ◽  
Jun Zhou

An integrated guidance and control method is investigated for interceptors with impact angle constraint against a high-speed maneuvering target. Firstly, a new control-oriented model with impact angle constraint of the integrated guidance and control system is built in the pitch plane by combining the engagement kinematics and missile dynamics model between the interceptor and target. Secondly, the flight path angle of the target is estimated by extended Kalman filter in order to transform the terminal impact angle constraint into the terminal line-of-sight angle constraint. Thirdly, a nonlinear adaptive sliding mode control law of the integrated guidance and control system is designed in order to directly obtain the rudder deflection command, which eliminates time delay caused by the traditional backstepping control method. Then the Lyapunov stability theory is used to prove the stability of the whole closed-loop integrated guidance and control system. Finally, the simulation results confirm that the integrated guidance and control method proposed in this paper can effectively improve the interception performance of the interceptor to a high-speed maneuvering target.


2019 ◽  
Vol 16 (6) ◽  
pp. 172988141989132
Author(s):  
Ivan Chavdarov ◽  
Bozhidar Naydenov

The proposed study presents an original concept for the design of a walking robot with a minimum number of motors. The robot has a simple design and control system, successfully moves by walking, avoids or overcomes obstacles using only two independently controlled motors. Described are basic geometric and kinematic dependencies related to its movement. It is proposed optimization of basic dimensions of the robot in order to reduce energy losses when moving on flat terrain. Developed and produced is a 3-D printed prototype of the robot. Simulation and experiments for overcoming an obstacle are presented. Trajectories and instantaneous velocities centers of links from the robot are experimentally determined. The phases of walking and the stages of overcoming an obstacle are described. The theoretical and experimental results are compared. The suggested dimensional optimization approaches to reduce energy loss and experimental determination of the instant center of rotation are also applicable to other walking robots.


2013 ◽  
Vol 347-350 ◽  
pp. 768-771 ◽  
Author(s):  
Jian Jun Zhou ◽  
Xiao Fang Wang ◽  
Xiu Wang ◽  
Wei Zou ◽  
Ji Chen Cai

A greenhouse monitoring and control system based on Zigbee networks was developed. This system consists of greenhouse data acquisition controller and greenhouse remote monitoring and control software. The system could monitor temperature and humidity, soil water content and concentration of carbon dioxide in greenhouse and could save these greenhouse data to database. Greenhouse acquisition controller had two kinds of control modes, including local manual control mode and remote wireless control mode in monitoring center. Greenhouse remote monitoring and control software can collect, display and record the collected data, also can control greenhouse environment. According to the current indoor temperature, the target temperature and the offset temperature, PID control method is used for temperature control in greenhouse. The system is implemented using low power wireless components, and easy to be installed. A good wireless solution is provided by this system for centralized management of the greenhouse group.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Shengjiang Yang ◽  
Jianguo Guo ◽  
Jun Zhou

A new integrated guidance and control (IGC) law is investigated for a homing missile with an impact angle against a ground target. Firstly, a control-oriented model with impact angle error of the IGC system in the pitch plane is formulated by linear coordinate transformation according to the motion kinematics and missile dynamics model. Secondly, an IGC law is proposed to satisfy the impact angle constraint and to improve the rapidity of the guidance and control system by combining the sliding mode control method and nonlinear extended disturbance observer technique. Thirdly, stability of the closed-loop guidance and control system is proven based on the Lyapunov stability theory, and the relationship between the accuracy of the impact angle and the estimate errors of nonlinear disturbances is derived from stability of the sliding mode. Finally, simulation results confirm that the proposed IGC law can improve the performance of the missile guidance and control system against a ground target.


Author(s):  
Takuya Nomoto ◽  
Daisuke Hunakoshi ◽  
Toru Watanabe ◽  
Kazuto Seto

This paper presents a new modeling method and a control system design procedure for a flexible rotor with many elastic modes using active magnetic bearings. The purpose of our research is to let the rotor rotate passing over the 1st and the 2nd critical speeds caused by flexible modes. To achieve this, it is necessary to control motion and vibration of the flexible rotor simultaneously. The new modeling method named as Extended Reduced Order Physical Model is presented to express its motion and vibration uniformly. By using transfer function of flexible rotor-Active Magnetic Bearings system, we designed a Local Jerk Feedback Control system and conducted stability discrimination with root locus. In order to evaluate this modeling and control method, levitation experimentation is conducted.


Author(s):  
Geng-Qun Huang ◽  
Han-Xiong Huang

An online wall thickness control strategy for the extrusion blow molded part was proposed in this work. A simulation-based optimization method combining with finite element, artificial neural network, and genetic algorithm was used to determine the initial die gap profile for a part with required thickness distribution. A multi-channel ultrasonic thickness measurement system was built up to get the in-mold wall thickness of the blow molded part. Then, a feedback closed-loop control system based on fuzzy iterative learning control algorithm was designed and implemented to control the wall thickness of blow molded part. The results showed that the online wall thickness control system developed in this work can automatically achieve a proper die gap profile and get the satisfied part thickness distribution.


2014 ◽  
Vol 678 ◽  
pp. 299-304
Author(s):  
Bao Guo Yao ◽  
Zhe Feng Zhang

The automatic monitoring and control method for aerosol cultivation of lettuce was proposed by real-time monitoring and automatic control of the cultivation environment, on-line detection and automatic control of nutrient solution, and the combination of field control and remote control, which has realized the intelligent management of aerosol cultivation of lettuce based on plant factory. The monitoring and control system of aerosol cultivation, the control model for the spray frequency of nutrient solution and the fuzzy control method for the pH value control of nutrient solution were introduced. The control system has been applied in the agricultural science and technology park, and the results show that the aerosol cultivation of lettuce has advantages over the traditional method.


2014 ◽  
Vol 496-500 ◽  
pp. 1401-1406
Author(s):  
Mei Hong Li ◽  
Jian Yin ◽  
Xue Yang Sun ◽  
Jin Xiang Xu ◽  
Mei Mei Zhang

Missile control system is not block strict feedback system which is suitable to use backstepping method. So in this paper, a backstepping control method is proposed to design a missile longitudinal autopilot and is proved to be asymptotically stable by Lyapunov stability theory. The simulation results show that the designed system can still track commands quickly and accurately and is robust with aerodynamic perturbation and control input saturation.


Sign in / Sign up

Export Citation Format

Share Document