Technical Research on Application of Warm Mix Flame-Retardant Noise Reduction Asphalt Mixture

2015 ◽  
Vol 723 ◽  
pp. 435-439
Author(s):  
Xi Rong Wu ◽  
Su Xian Li

Due to the special environment of the tunnel, the paper developed a kind of antiflaming, warm-mix and noise reduction asphalt mixture combined with engineering practice chishui tunnel project in jiangxi province. Asphalt mixture has good performance in low mixing temperature, flame retardant, noise reduction and better performance by using AMP flame-retardant and Evotherm DAT warmed-mix technology. A series of test are carried out to analyze the characteristics of high temperature rutting, low temperature crack resistance and water stability of warmed mix flame retardant noise reduction asphalt mixture and Ordinary hot mix asphalt mixture. The result show that, compared with the pavement performance of ordinary hot mix asphalt mixture AC-13, the new type of asphalt mixture OGFC-13 has good cooling, flame retardant and noise reduction performance.

2013 ◽  
Vol 361-363 ◽  
pp. 1635-1639
Author(s):  
Qing Zhou Wang ◽  
Shu Yan Liu ◽  
Xiao Li Li

The warm mix asphalt technology was introduced to breaks through the low reclaimed asphalt pavement (RAP) ratio in central plant hot recycled engineering. Firstly, performance tests for traditional hot mix asphalt and central plant warm recycled asphalt mixture with different RAP ratios (0%,40%,50%,70%,100%) were conducted. It was concluded that the performance of warm mix asphalt was as good as hot mix asphalt, and the RAP ratio could increase to 60% by central plant warm recycling technology. Then a practical central plant warm recycled engineering with RAP ratio 50% was analyzed. It was concluded that not only the performance of the recycled asphalt mixture met the standard requirements absolutely, but also the compaction quality of the recycled pavement was improved.


2013 ◽  
Vol 438-439 ◽  
pp. 395-398
Author(s):  
Yu Qing Yuan ◽  
Xiu Shan Wang ◽  
Tao Guo

To study the properties of warm mix flame retardant asphalt mixture, a series tests were put forward, including Marshall Combustion experiments, rut specimen combustion experiment and texture depth experiment. With less mass loss, the warm mix retardant asphalt mixture has a better Marshall Stability, residual stability and freeze-thaw splitting strength ratio after combustion. The composite flame retardant can slow down and stop the burning of asphalt, reduce asphalt aging degree during burning process. The burning amount of warm mix flame retardant asphalt mixture is less than the ordinary hot mix asphalt concrete. To sum up, the warm mix flame retardant asphalt mixture has a good comprehensive performance.


2021 ◽  
Vol 36 (1) ◽  
pp. 67-77
Author(s):  
Yue Wu ◽  
Junkai Huang ◽  
Jiafeng Chen

The long-span ice composite shell structure is a new type of ice and snow structure developed in recent years. The engineering practice of ice composite shell shows that sublimation is one of the important reasons for its damage and even collapse. In this paper, we firstly supplemented the existing H-K equation and obtained the revised ice sublimation equation through indoor evaporative plate experiment considering the influence of admixtures and wind speed. Afterwards, combining the simulations of solar radiation and CFD, the numerical simulation of sublimation distribution on the surface of were realized by programming in Grasshopper platform. During sublimation, the thickness of the ice composite shell decreases by 0.38 mm every 10 days and the sublimation rate on the sunny side was 1.7 times that on the shady side. Finally, the static performance and stability of the sublimated ice composite spherical shell were analyzed. After 70 days of sublimation, the thickness of the ice composite shell structure becomes thinner and uneven, which leads its sensitivity to external load increases.


2021 ◽  
Vol 13 (6) ◽  
pp. 3005
Author(s):  
Jiangang Yang ◽  
Chen Sun ◽  
Wenjie Tao ◽  
Jie Gao ◽  
Bocheng Huang ◽  
...  

In this study, the compaction characteristics of recycled hot-mix asphalt (RHMA) were evaluated using the void content (VV), compaction energy index (CEI), slope of accumulated compaction energy (K), and lock point (LP). Then, the effects of the compaction parameters, including the gradation of the RHMA, reclaimed asphalt pavement (RAP) content, temperature of gyrations, and number of gyrations, on the compaction characteristics of RHMA were investigated. An orthogonal experiment was designed and the data collected were analyzed via range analysis; then, a regression model was generated relying on a quadratic polynomial. Furthermore, the regression model was used for the comparison and prediction of the mixture’s compactability during the material design. Finally, the compaction mechanism of RHMA was discussed from the perspective of the void content of RAP particles. The results showed that a finer aggregate gradation, a higher gyration temperature, a greater number of gyrations, and a higher RAP content were effective for increasing the compactability of RHMA. The range analysis results suggest that the gradation of RHMA has the greatest influence on compactability, followed by the RAP content. The RAP aggregate cannot diffuse to a new mixture completely, so the remained RAP particle reduces the void content of RHMA. Therefore, a higher RAP content up to 50% can help RHMA to achieve the designed void content with higher efficiency.


2012 ◽  
Vol 39 (7) ◽  
pp. 824-833 ◽  
Author(s):  
Sangyum Lee ◽  
Cheolmin Baek ◽  
Je-Jin Park

This paper presents the performance evaluation of unmodified and lime-modified hot mix asphalt (HMA) mixtures at varying asphalt content using asphalt mixture performance test developed from National Cooperative Highway Research Program project 9-19 and 9-29 and the viscoelastic continuum damage finite element analysis. Test methods adopted in this study are the dynamic modulus test for stiffness, the triaxial repeated load permanent deformation test for rutting, and the direct tension test for fatigue cracking. The findings from this study support conventional understanding of the effects of asphalt content and lime modification on the fatigue cracking and rutting performance. Finally, the optimum asphalt content for both lime-modified and unmodified mixtures are proposed based on the knowledge gleaned from the performance-based mix design methodology. With additional validation and calibration, the comprehensive methodology described in this paper may serve as the foundation for a performance-based HMA mix design and performance-related HMA specifications.


2014 ◽  
Vol 3 (1) ◽  
pp. 35-42
Author(s):  
Carmen Răcănel ◽  
Adrian Burlacu

Abstract The benefits of WMA technologies include reduced fuel usage and emissions in support of sustainable development, improved field compaction, which can facilitate longer haul distances and cool weather pavement, and better working conditions. Since this is a relatively new technology, it is necessary to determine the behavior and the performances of this type of asphalt mixture depending on additive percent. These technologies tend to reduce the viscosity of the asphalt and provide for the complete coating of aggregates at lower temperatures. WMA is produced at temperatures 20 to 30°C lower than typical hot-mix asphalt (HMA). The paper presents the results obtained in the Road Laboratory of Technical University of Civil Engineering Bucharest on an asphalt mixture with fibers (MASF16) prepared according to the “warm mix” technology with chemical additive. Different percent of additive are used in laboratory to draw up the “master curves” of asphalt mixture obtained by 4PB-PR stiffness modulus results.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Xing Wang ◽  
Yu Jiang ◽  
Yonghui Huang ◽  
Yue Huang ◽  
Fan Wang

Plate-cone reticulated shell is a new type of spatial structures with good mechanical behavior, technical economy, and architectural appearance. In this paper, using ANSYS software, the strength failure analysis model of composite laminates is established in cooperation with the Strength Criterion of Hoffman. The effects of layer number, laying direction, and thickness of laminates on the ultimate strength of laminates are studied by detailed parametric analysis, which provides a theoretical basis for the design of composite plate-cone reticulated shell and GFRP laminated plates. Some important conclusions are obtained and can be applied to engineering practice.


Sign in / Sign up

Export Citation Format

Share Document