Study on Warm Mix Flame Retardant Asphalt Mixture

2013 ◽  
Vol 438-439 ◽  
pp. 395-398
Author(s):  
Yu Qing Yuan ◽  
Xiu Shan Wang ◽  
Tao Guo

To study the properties of warm mix flame retardant asphalt mixture, a series tests were put forward, including Marshall Combustion experiments, rut specimen combustion experiment and texture depth experiment. With less mass loss, the warm mix retardant asphalt mixture has a better Marshall Stability, residual stability and freeze-thaw splitting strength ratio after combustion. The composite flame retardant can slow down and stop the burning of asphalt, reduce asphalt aging degree during burning process. The burning amount of warm mix flame retardant asphalt mixture is less than the ordinary hot mix asphalt concrete. To sum up, the warm mix flame retardant asphalt mixture has a good comprehensive performance.

2019 ◽  
Vol 5 (12) ◽  
pp. 2535-2553 ◽  
Author(s):  
Saif Al-din Majid Ismael ◽  
Mohammed Qadir Ismael

Durability of hot mix asphalt (HMA) against moisture damage is mostly related to asphalt-aggregate adhesion. The objective of this work is to find the effect of nanoclay with montmorillonite (MMT) on Marshall properties and moisture susceptibility of asphalt mixture. Two types of asphalt cement, AC(40-50) and AC(60-70) were modified with 2%, 4% and 6% of Iraqi nanoclay with montmorillonite. The Marshall properties, Tensile strength ratio(TSR) and Index of retained strength(ISR) were determined in this work. The total number of specimens was 216 and the optimum asphalt content was 4.91% and 5% for asphalt cement (40-50) and (60-70) respectively. The results showed that the modification of asphalt cement with MMT led to increase Marshall stability and the addition of 6% of MMT recorded the highest increase, where it increased by 26.35% and 22.26% foe asphalt cement(40-5) and(60-70) respectively. Also, the addition of MMT led to increase moisture resistance of asphalt mixture according to the increase in TSR and IRS. The addition of 4% and 6% of MMT recorded the highest increase in TSR and IRS for asphalt cement (40-50) and (60-70) respectively, where they increased by 11.8% and 17.5% respectively for asphalt cement (40-50) and by 10% and 18% respectively for asphalt cement (60-70).


2011 ◽  
Vol 266 ◽  
pp. 135-138 ◽  
Author(s):  
Yu Qing Yuan ◽  
Dan Ying Gao ◽  
Jun Zhao ◽  
Ji Yu Tang ◽  
Shao Hua Zhai

To improve water stability, we mixed asphalt mixture with cement, slag micro powders and lignin fibers, respectively. The Marshall immersion and freeze-thaw splitting tests were carried out. It is shown that cement replacing mineral powders can improve the water stability of asphalt mixture, especially at the content of 1/3 mineral powders, with a Marshall stability of 11.50 kN and a soaking residual stability of 92.46%, increasing by 10.79% and 6.58%, respectively, than those without any cement. According to the results of cement replaced by slag micro powders, its stability increases by 1.38kN, and the soaking residual stability is 90.64%, but the freeze-thaw splitting tensile strength slightly decreases. It is indicated that the water stability of the asphalt mixture can be improved by adding 0.3% lignin fibers, the soaking residual stability increasing from 86.75% to 97.41% and the ratio of freeze-thaw splitting tensile strength rising from 60.94% to 80.29%. It is concluded that the best effect can be reached by adding 0.3% lignin fibers.


2017 ◽  
Vol 753 ◽  
pp. 321-325 ◽  
Author(s):  
Rerhard Halomoan Limbong ◽  
Sigit Pranowo Hadiwardoyo ◽  
Raden Jachrizal Sumabrata ◽  
Raden Hendra Ariyapijati

Pavement construction is expected to support vehicle loads and be weather- and water-resistant. In tropical regions with high temperatures and high rainfall intensity, pavement design and construction must consider the effects of temperature. The addition of crumb rubber (CR) can improve the performance of asphalt concrete in response to vehicle loads and ambient temperature. Fiber-shaped CR can be mixed with the aggregate and bitumen in asphalt concrete. In this study, CR was added to the aggregate in a type of asphalt concrete for wearing courses known as hot mix asphalt (HMA). A series of tests were conducted using the Marshall standard or immersion and wheel tracking machine (WTM). CR was added to the HMA at 5%, 10%, 15%, and 20% in aggregate and further mixed with bitumen with 60/70 penetration grade. The additive materials increased the value of the Marshall stability compared to the virgin asphalt mixture. However, this result was not obtained in the WTM test; the addition of CR increased rutting compared to the asphalt mixture without additive. The addition of CR to HMA reduced the voids in the mix, and weakened the capacity of the asphalt concrete to support repeated vehicle wheel loading.


2013 ◽  
Vol 303-306 ◽  
pp. 2501-2504 ◽  
Author(s):  
Pan Pan ◽  
Chang Jun Sun ◽  
Ning Tang ◽  
Ming Yu Chen ◽  
Shao Peng Wu

Conductive asphalt concrete, a kind of intelligent materials, can serve as asphalt solar collector, asphalt heater and self monitor. And moisture damage is one of the most common performance degradation of asphalt concrete. This paper investigates the volume properties of conductive asphalt concrete based on Freeze-thaw cycles. Marshall specimen was frozen and thawed repeatedly and a cycle consists 16h at -18oC and 8h at 60oC. The change of air void and weight loss ratio were chosen to evaluate the moisture resistance of conductive asphalt concrete. Three types of asphalt mixture (control, CAC 1 and CAC 2) were used to study the effect of initial void and material composition on moisture resistance. The results show that both the framework structures and the material composition have a great effect on antifreeze-thaw property of asphalt concrete, which provides an efficient guidance for application of this technology in pavement.


2015 ◽  
Vol 723 ◽  
pp. 435-439
Author(s):  
Xi Rong Wu ◽  
Su Xian Li

Due to the special environment of the tunnel, the paper developed a kind of antiflaming, warm-mix and noise reduction asphalt mixture combined with engineering practice chishui tunnel project in jiangxi province. Asphalt mixture has good performance in low mixing temperature, flame retardant, noise reduction and better performance by using AMP flame-retardant and Evotherm DAT warmed-mix technology. A series of test are carried out to analyze the characteristics of high temperature rutting, low temperature crack resistance and water stability of warmed mix flame retardant noise reduction asphalt mixture and Ordinary hot mix asphalt mixture. The result show that, compared with the pavement performance of ordinary hot mix asphalt mixture AC-13, the new type of asphalt mixture OGFC-13 has good cooling, flame retardant and noise reduction performance.


2019 ◽  
Vol 5 (12) ◽  
pp. 2727-2737
Author(s):  
Amjad H. Albayati ◽  
Waleed Arrak Turkey

Sustainability is very important in this world at this time. One of the best materials used for sustainability in asphalt concrete pavements is the warm mix asphalt (WMA) as well as the reclaimed asphalt pavement (RAP). WMA technology has the ability to reduce production temperature to reduce the fuel usage and emissions. RAP is the old concrete asphalt mixture that is out of service and using it again leads to preservation of the virgin material. This search studied the viability of using WMA with different percentages of RAP (10%, 30%, and 50%) and compared them with control hot mix asphalt (HMA) and WMA. The Marshall properties, Tensile strength ratio (TSR), rut depth and fatigue life were determined in this work. The results showed that the tensile strength ratio (TSR) for HMA was better than that for WMA by 6%, rut depth for HMA was (4.37 mm) lower than that for WMA was (6.5mm), better fatigue life was obtained for WMA was (700 cycle) as compared to HMA was (500 cycle). In case of WMA with RAP (WMA-RAP), when the percentage of RAP increased with WMA, the moisture damage resistance improved by 2.5%, 13.3% and 15.4% for G1, G3 and G5 respectively, also the rutting resistance improved by 34.6%, 48% and 62.3% for G1, G3 and G5 respectively, but deteriorated of fatigue life by 45.8%, 74% and 88.5% for G1, G3 and G5 respectively.


Author(s):  
Ilham I. Mohammed

Sinceasphalt concrete undergo different failure problems at different temperature and moisture conditions and for years many scientists and researchers used different kinds of materials and variety of methods for improving the properties of asphalt concrete made with either basalt or limestone.So it became necessary to provide the best possible way to get rid of these failure problems.In this study diluted zycotherm nanomaterial at three different percentages by weight of aggregate used with two aggregate types, basalt and limestone, and asphalt concrete made with the marinated aggregate and later the properties of asphalt concrete were investigated after the marination.Indirect tensile strength test and retained stability test results were used to evaluate the marinating effect.As a result zycotherm dilution by weight of aggregate has changed the properties of asphalt mixture and improved to a great extent. From the results it can be concluded that rutting and fatigue problems decreased with a great range.


2021 ◽  
Vol 45 (1) ◽  
pp. 11-15
Author(s):  
Arabi N.S. Al Qadi ◽  
Taisir S. Khedaywi ◽  
Madhar A. Haddad ◽  
Owies A. Al-Rababa'ah

Technology in transportation used available resources to make it safe, fast, suitable, easy, economic, and environmental to transport people and goods. Olive Husk became an environmental problem as waste materials especially in the Middle East where huge quantities are found. The objective of this research is to investigate the effect of addition of Olive Husk Ash (OHA) on the properties of asphalt concrete mixtures. Marshall Test was used to perform the asphalt concrete mixture by the addition of OHA to the binder of asphalt; different percentages of OHA (0, 5, 10, 15, and 20%) by volume were added to the binder. Five percent of asphalt cements (5, 5.5, 6, 6.5 and 7%) by weight and limestone aggregate were used for preparing asphalt mixture specimens to find the optimum content of asphalt that could be used in the binder. Tests on flow, stability, air void percentage and void in mineral aggregate, retained stability, stiffness, and retained stiffness were made. The principle results on OHA as filler in Asphalt binder improves the Marshall Stability, and void in mineral aggregate and decrease in flow, retained stability, stiffness, and retained stiffness with a 10%-15% of olive husk ash replacement of asphalt binder. The contribution that OHA could be used as a pavement construction material in field.


Author(s):  
Matthew A. Haynes ◽  
Erdem Coleri ◽  
Shashwath Sreedhar

Deterioration of the concrete bridge deck is one of the most significant problems affecting the service life of bridges in the United States (U.S.). The early failure of asphalt pavement overlays on concrete bridge decks with spray-on waterproofing membranes has been recognized as a significant issue by the Oregon Department of Transportation (ODOT). Potential reasons for the failure of the asphalt overlays were thought to be the poor adhesion between the waterproofing membrane and the asphalt-wearing course, and the material properties of the asphalt layer. Moisture penetration into the asphalt overlay and standing water on the concrete bridge deck result in expansion and contraction at the interface on the bridge deck during freeze-thaw cycles. Expansion and contraction because of freeze-thaw cycles cause debonding at the interface and result in an increased rate of deterioration for the asphalt concrete overlay. Additionally, the de-icing salts used to prevent hazardous roadway surfaces in the winter permeate into the deck and cause corrosion of the steel reinforcement, weakening the structural integrity of the bridge. The main goal of this study is to develop an impermeable asphalt mixture with high cracking and rutting resistance that can seal and protect the concrete bridge deck by preventing water and de-icing salts from penetrating into the concrete deck. Permeability of developed asphalt mixtures was quantified by permeability testing and moisture sensor measurements. Rutting and cracking resistance of the developed impermeable asphalt mixture strategies were also evaluated by conducting flow number (FN) and semi-circular bend (SCB) tests in the laboratory.


2015 ◽  
Vol 1095 ◽  
pp. 280-283 ◽  
Author(s):  
Peng Tian ◽  
Gao Feng Zhan ◽  
Lei Nai

Making the test specimen of asphalt mixture, testing the parameters of specimen, such as bulk specific gravity, percentage of voids in aggregate, percent bitumen volume in asphalt mixtures, asphalt saturation,percent voids in coarse mineral aggregate, marshall stability, dynamic stability, marshall residual stability ratio, freeze-thaw splitting strength ratio. Based on the method of principal component analysis, the items of principal component and the contribution rate will be calculated. With the cumulative contribution rate of 90% for the standard, the principal components will be selected. Taking the contribution rate as the weighting, the comprehensive score will be calculated. The research shows that using the method of principal component analysis to comprehensively evaluate asphalt-mixture performance is workable.


Sign in / Sign up

Export Citation Format

Share Document