Heat Recovery and Burner Modification of an Industrial Tubular Furnace

2015 ◽  
Vol 737 ◽  
pp. 296-300
Author(s):  
Xi Lai Zhang ◽  
Wei Yao

The air preheater was installed on the furnace to decrease the exhaust gas temperature and heat the air to about 290°C. A radiant cylinder was added to the radiation section. Swirl flames were formed by adjusting the shape and the installation angles of the burner flame tubes. The radiation heat transfer was strengthened and the heat absorption was enhanced in the radiation section, while the temperature at the outlet of the furnace was decreased. Thus energy was saved by 16.7%.

2012 ◽  
Vol 622-623 ◽  
pp. 1162-1167
Author(s):  
Han Fei Tuo

In this study, energetic based fluid selection for a solid oxide fuel cell-organic rankine combined power system is investigated. 9 dry organic fluids with varied critical temperatures are chosen and their corresponding ORC cycle performances are evaluated at different turbine inlet temperatures and exhaust gas temperature (waste heat source) from the upper cycle. It is found that actual ORC cycle efficiency for each fluid strongly depends on the waste heat recovery performance of the heat recovery vapor generator. Exhaust gas temperature determines the optimal fluid which yields the highest efficiency.


2019 ◽  
Vol 116 ◽  
pp. 00017 ◽  
Author(s):  
Edyta Dudkiewicz ◽  
Paweł Szałański

Heating of large-cubage buildings accounts for significant share of energy consumption. The radiant heating system using gas heaters is a common solution for large-cubage halls and is considered to be energy efficient. There is a possibility of additional heat energy recovery from the flue gases of gas radiant heaters because new solutions were introduced to the market. Furthermore heat recovery consists the most promising solution and develop during the recent years rapidly. On the other hand, few works have been dedicated to heat recovery from exhaust gas but none of them consider exhaust gas from radiant heaters. Exhaust gas temperature depends on the type and efficiency of the gas heater. The selection of both the type of radiant heaters and the heat recovery system requires many factors to be taken into account. This study consider possibilities for application of different heat exchangers in exhaust gases system of gas radiant heaters. The authors propose to classify exhaust gas heat recovery systems in dependence on intermediary medium: water/air, gas heaters type: ceramic/tube and number (single/group) and their mounting location.


Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 706 ◽  
Author(s):  
Jiayou Liu ◽  
Fengzhong Sun

Controlling the exhaust gas temperature (EGT) of coal–fired boilers at a reasonable value is beneficial to ensuring unit efficiency and preventing acid corrosion and fouling of tail heating surfaces in power plants. To obtain the operation regulation of coupled high–low energy flue gas waste heat recovery system (CWHRS) under a given EGT, experimental equipment was designed and built. Experiments were carried out to maintain the exhaust gas temperature under different flue gas flow, flue gas temperature and air temperature conditions. As the flue gas flows, the flue gas temperatures and air temperatures increased, and the bypass flue gas flow proportions or the water flows of the additional economizer were increased to maintain the EGT at about 85 °C. An improved low temperature economizer (LTE) and front located air heater (FAH) system were put forward. As the flow of the crossover pipe increased, the EGT and the inlet water temperature of the LTE increased. As the flow of the circulating loop increased, the EGT and the inlet water temperature of the LTE decreased. Operation regulations of LTE–FAH system under four cases were given. The operation regulations of CWHRS and LTE–FAH system can provide references for power plant operation.


2021 ◽  
Vol 261 ◽  
pp. 01059
Author(s):  
Xujing Zhai ◽  
Shoutao Tian ◽  
Kelin Zhu ◽  
Pan Huang ◽  
Jin Yu ◽  
...  

Based on an example of a gas-fired boiler for an industrial user in Tianjin, the absorption heat pump technology was used to carry out energy-saving transformation of the above boiler. The actual test was carried out on the gas flow, exhaust gas temperature and other parameters from January 2, 2018 to February 26, 2018. And then, the thermal efficiency of the boiler was analysed. The results show that after the energy-saving transformation, the exhaust gas temperature of the gas-fired boiler can be reduced from 140 °C to about 40 °C, and the overall thermal efficiency of the boiler also rises from 89.5% to 101.3%, which is 13.2% higher than that before optimization. According to the economic analysis, the energy-saving reconstruction project can achieve an energy-saving economic benefit of 1.598 million yuan throughout the year, with obvious energy-saving and emission reduction benefits.


Author(s):  
Yasuhisa Ichikawa ◽  
Hidenori Sekiguchi ◽  
Oleksiy Bondarenko ◽  
Koichi Hirata

This study aims to develop an exhaust gas temperature increase technique of a lean burn gas engine, to improve the performance of the waste heat recovery devices that potentially can be installed in the future. This paper shows the exhaust gas temperature increase technique using an EGR device. In our experiments, the lean burn gas engine has the rated power output of 400 kW with spark-ignition and pre-chamber systems. The EGR device was developed and installed to the gas engine. The experimental results showed that the exhaust gas temperature was increased to +30 °C at the EGR rate of 15 % with maintained NOx emission and CA MFB 50% by decreasing the relative air/fuel ratio (Λ) and advancing the ignition timing (θig). In addition, the gross generation efficiency was slightly increased with increasing the EGR rate. This result was explained using three factors; the internal engine efficiency, the combustion efficiency, and the recirculated energy rate.


2020 ◽  
pp. 431-434
Author(s):  
Oliver Arndt

This paper deals with the conversion of coke fired lime kilns to gas and the conclusions drawn from the completed projects. The paper presents (1) the decision process associated with the adoption of the new technology, (2) the necessary steps of the conversion, (3) the experiences and issues which occurred during the first campaign, (4) the impacts on the beet sugar factory (i.e. on the CO2 balance and exhaust gas temperature), (5) the long term impressions and capabilities of several campaigns of operation, (6) the details of available technologies and (7) additional benefits that would justify a conversion from coke to natural gas operation on existing lime kilns. (8) Forecast view to develop systems usable for alternative gaseous fuels (e.g. biogas).


2015 ◽  
Vol 22 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Zbigniew Korczewski

Abstract The article discusses the problem of diagnostic informativeness of exhaust gas temperature measurements in turbocharged marine internal combustion engines. Theoretical principles of the process of exhaust gas flow in turbocharger inlet channels are analysed in its dynamic and energetic aspects. Diagnostic parameters are defined which enable to formulate general evaluation of technical condition of the engine based on standard online measurements of the exhaust gas temperature. A proposal is made to extend the parametric methods of diagnosing workspaces in turbocharged marine engines by analysing time-histories of enthalpy changes of the exhaust gas flowing to the turbocompressor turbine. Such a time-history can be worked out based on dynamic measurements of the exhaust gas temperature, performed using a specially designed sheathed thermocouple. The first part of the article discusses possibilities to perform diagnostic inference about technical condition of a marine engine with pulse turbocharging system based on standard measurements of exhaust gas temperature in characteristic control cross-sections of its thermal and flow system. Selected metrological issues of online exhaust gas temperature measurements in those engines are discusses in detail, with special attention being focused on the observed disturbances and thermodynamic interpretation of the recorded measuring signal. Diagnostic informativeness of the exhaust gas temperature measurements performed in steady-state conditions of engine operation is analysed in the context of possible evaluations of technical condition of the engine workspaces, the injection system, and the fuel delivery process.


Author(s):  
S. Mohammad Javadi ◽  
Pourya Nikoueeyan ◽  
Mohammad Moghiman ◽  
M. Ebrahim Feyz

The enhancement of the flame radiation in gas fueled burners not only improves the thermal efficiency, but also can suppress the rate of NO emission due to reducing the flame temperature. In this experimental investigation, the effect of inlet gas temperature on the flame radiation intensity and the rate of NO formation are studied. To serve this aim, with increasing the temperature of inlet methane to the burner up to 310°C, the variations of CO and NO level in exhaust gases and also the exhaust gas temperature are recorded by gas analyzer device. In each case, the flame radiation intensity was also measured by a photovoltaic module. The results revealed that by increasing the inlet gas temperature up to 250°C, the NO concentration and the exhaust gases temperature are raising. But when the inlet gas temperature exceeds from 250°C and reaches to 310°C, the flame luminosity gradually increases which results in 70 percent growth in flame radiation and 10 percent drop in exhaust gas temperature. The results of the preheating of inlet air also show the same behavior.


Author(s):  
Mehrzad Kaiadi ◽  
Per Tunestal ◽  
Bengt Johansson

High EGR rates combined with turbocharging has been identified as a promising way to increase the maximum load and efficiency of heavy duty spark ignition Natural Gas engines. With stoichiometric conditions a three way catalyst can be used which means that regulated emissions can be kept at very low levels. Most of the heavy duty NG engines are diesel engines which are converted for SI operation. These engine’s components are in common with the diesel-engine which put limits on higher exhaust gas temperature. The engines have lower maximum load level than the corresponding diesel engines. This is mainly due to the lower density of NG, lower compression ratio and limits on knocking and also high exhaust gas temperature. They also have lower efficiency due to mainly the lower compression ratio and the throttling losses. However performing some modifications on the engines such as redesigning the engine’s piston in a way to achieve higher compression ratio and more turbulence, modifying EGR system and optimizing the turbocharging system will result in improving the overall efficiency and the maximum load limit of the engine. This paper presents the detailed information about the engine modifications which result in improving the overall efficiency and extending the maximum load of the engine. Control-related problems associated with the higher loads are also identified and appropriate solutions are suggested.


Sign in / Sign up

Export Citation Format

Share Document