The Prediction of Vehicle Collision Risk in Traffic Conflict Zone Based on Bayesian Network

2015 ◽  
Vol 744-746 ◽  
pp. 1953-1959 ◽  
Author(s):  
Li Xin Yan ◽  
Song Gao ◽  
Hao Cai ◽  
Hui Wan

The external traffic environment has a big influence to the traffic safety during the area of traffic conflict place,and to analysis the relationship between the external traffic environment factors and driving safety is helpful to improve the traffic safety. The method of comprehensive analysis the historical data and expert survey data is used to explore this question. And at the same time, the collision risk prediction model during the traffic conflict place is built by the Bayesian network. According to the data analyzing, the node variable, the state of variable and the conditional probability table of this model is also built. Finally, the software of Hugin is used to deal with the posteriori probability of collision risk, and the result proved that this model can predict the collision risk accurately during the traffic conflict area, and the data analyzing showed that the factor of the driver's intention, the vehicle speed and the headway have a significance influence to the traffic safety.

2013 ◽  
Vol 579-580 ◽  
pp. 841-844
Author(s):  
Zhao Cao ◽  
Xiao Wu ◽  
Qing Yang

With the increasingly outstanding of the traffic safety issue, the human factors in People-Vehicle-Road System are being emphasized gradually. Takes Jinhua suburb asphalt mountain road (two-lane, multiple steep slopes) for example, this study focuses on road engineering response analysis on driving reaction, design optimization of road engineering base on driving response. A driver over 3 driving years steered 5-seat car in 4 kilometers long experimental road, kept the vehicle speed (V) under 40km/h. Heartbeat rate of the driver was monitored by dynamic Holter through driving process. The analysis shows that there is a linear positive correlation between Heart beat growth rate (Ni) and V, a nearly positive correlation between lateral force coefficient (μ) and Ni, and nearly inversely proportional between plane curve radius (R) and slope (i). It should decrease R appropriately when road slope (i) much sharply in road alignment design. There is a polynomial relation between Ni, V and R. As R increases, both Ni and V reduce firstly, and then rise. When R ranges from 240 to 500 meter, stress gradually ease; while R exceeds 500 meter, driving reaction tension gradually rise. R<550 m, i <6% and slope length under 300 m in the experimental road. When instructional speed <40km/h, then Ni was 30.2% and μ was 0.25. Its benefit for driving safety to keep drivers in appropriate tension in such situation.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yongtao Liu ◽  
Jie Qiao ◽  
Yanting Hu ◽  
Tengyuan Fang ◽  
Ting Xu ◽  
...  

Different vehicular speed limits may have an impact on the balance between safety and efficiency of travel on mountainous road corners associated with complex road conditions. Placing suitable speed limit warning signs does not merely effectively improve traffic safety but can also improve traffic efficiency. In this study, a global positioning system (GPS) terminal and Metrocount were used to collect vehicle speed data from more than 40 provincial-level curves in 8 provinces over the course of 1 year. Each road data collection time-period lasted approximately 8 hours. A descriptive statistics method was adopted by means of data screening and pretreatment. Additionally, both a velocity difference estimation model was established and a linear model of velocity differential estimation was constructed. Quantitative analysis was carried out on the safe speed, the driver’s expected speed, and the location of the speed limit warning signs. This demonstrated a positive correlation with the initial speed. When the difference in speed was greater than 15 km/h, a safety warning sign was required to limit the design speed to 80 km/h. A safety warning sign was also required when the corner radius was less than 300 m. The location of safety warning signs could be calculated based on the operating speed and taking driving safety and the visual range of drivers into consideration. The results can provide a theoretical reference for setting up appropriate safe speed limiting signs on road corners in mountainous areas.


2013 ◽  
Vol 723 ◽  
pp. 189-195
Author(s):  
Yong Fang ◽  
Zhong Yin Guo

To solve the problems in the current deterministic method of a maximum speed limit for expressway, a method of dynamic speed limit on expressway under complex climate was presented which was based on pavement skid-resistant performance. Firstly, the variation of pavement skid-resistant performance under complex climate conditions was analysed based on research results and certain experimental statistic data. By analysing the influence rule of AC-16 and SMA-16 pavement texture, pavement temperature, water film thickness, ice thickness, vehicle speed to pavement Skid-Resistant Performance, pavement actual friction coefficient calculation model and reference standard were established under different pavement condition Then, by analysing the geometry line indexes, pavement conditions and vehicle dynamics, the critical sideslip speed and critical longitudinal-driving safety speed was formulated; therefore, with critical speed as a constraint of safety driving and interval classification of complex climatic conditions, the dynamic speed calculate method and safety speed control standard were proposed under various pavements conditions, visibilities and traffic environments. This method for overcoming the weakness of a maximum speed limit of expressway operation and improving traffic safety is helpful.


Author(s):  
Yue Ren ◽  
Ling Zheng ◽  
Wei Yang ◽  
Yinong Li

Adaptive cruise control, as a driver assistant system for vehicles, can adjust the vehicle speed to keep the appropriate distance from other vehicles, which highly increases the driving safety and driver’s comfort. This paper presents hierarchical adaptive cruise control system that could balance the driver’s expectation, collision risk, and ride comfort. In the adaptive cruise control structure, there are two controllers to achieve the function. The one is the upper controller which is established based on the model predictive control theory and used to calculate the desirable longitudinal acceleration. The collision risk is described by the Gaussian distribution. A quadratic cost function for model predictive control is formulated based on the potential field method through the contradictions between the tracking error, collision risk, and the longitudinal ride comfort. The other one is the lower optimal torque vectoring controller which is constructed based on the vehicle longitudinal dynamics. And it can generate the desired acceleration considering the anti-wheel slip limitations. Several simulations under different road conditions demonstrate that the proposed adaptive cruise control has significant performance on balancing the tracking ability, collision avoidance, ride comfort, and adhesion utilization. It also maintains vehicle stability for the complex road conditions.


2019 ◽  
Vol 11 (12) ◽  
pp. 1453 ◽  
Author(s):  
Shanxin Zhang ◽  
Cheng Wang ◽  
Lili Lin ◽  
Chenglu Wen ◽  
Chenhui Yang ◽  
...  

Maintaining the high visual recognizability of traffic signs for traffic safety is a key matter for road network management. Mobile Laser Scanning (MLS) systems provide efficient way of 3D measurement over large-scale traffic environment. This paper presents a quantitative visual recognizability evaluation method for traffic signs in large-scale traffic environment based on traffic recognition theory and MLS 3D point clouds. We first propose the Visibility Evaluation Model (VEM) to quantitatively describe the visibility of traffic sign from any given viewpoint, then we proposed the concept of visual recognizability field and Traffic Sign Visual Recognizability Evaluation Model (TSVREM) to measure the visual recognizability of a traffic sign. Finally, we present an automatic TSVREM calculation algorithm for MLS 3D point clouds. Experimental results on real MLS 3D point clouds show that the proposed method is feasible and efficient.


Robotica ◽  
2012 ◽  
Vol 31 (4) ◽  
pp. 525-537 ◽  
Author(s):  
F. Belkhouche ◽  
B. Bendjilali

SUMMARYThis paper introduces a probabilistic model for collision risk assessment between moving vehicles. The uncertainties in the states and the geometric variables obtained from the sensory system are characterized by probability density functions. Given the states and their uncertainties, the goal is to determine the probability of collision in a dynamic environment. Two approaches are discussed: (1) The virtual configuration space (VCS), and (2) the rates of change of the visibility angles. The VCS is a transformation of observer that reduces collision detection with a moving object to collision detection with a stationary object. This approach allows to create simple geometric collision cones. Error propagation models are used to solve the problem when going from the VCS to the configuration space. The second approach derives the collision conditions in terms of the rate of change of the limit visibility angles. The probability of collision is then calculated. A comparison between the two methods is carried out. Results are illustrated using simulation, including Monte Carlo simulation.


2013 ◽  
Vol 333-335 ◽  
pp. 805-810 ◽  
Author(s):  
Rong Bao Chen ◽  
Ning Li ◽  
Hua Feng Xiao ◽  
Wei Hou

With the development of economy, there are an increasing number of cars as well as traffic accidents, thus intensifying the need to take measures to reduce traffic accidents and protect the safety of life and property. Vehicle distance is one of the most important indexes of traffic safety. The measurement of safety vehicle distance has become an increasingly hot research area of intelligent transportation. Through analyzing the basic principle of stereo vision and calibrating the parameters of the CCD sensors both inside and outside, this paper comes up with a method to measure the former vehicle distance based on stereo vision and DSP. Once the vehicle speed and distance form a non-security association, it will give a warning, and upload data or force speed-limiting. According to the different coordinates of the obtained images of the target vehicle from the left and the right sensor, this method can identify feature points, calculate distance to the target vehicle, and analyze the security of vehicle distance. The experimental results show that this method has wide measurement range, high measurement accuracy, and fast operation rate, thus it can meet the actual needs of the measurement of safe vehicle distance in intelligent transportation.


2021 ◽  
Vol 13 (16) ◽  
pp. 9278
Author(s):  
Ruoxi Jiang ◽  
Shunying Zhu ◽  
Hongguang Chang ◽  
Jingan Wu ◽  
Naikan Ding ◽  
...  

Currently, several traffic conflict indicators are used as surrogate safety measures. Each indicator has its own advantages, limitations, and suitability. There are only a few studies focusing on fixed object conflicts of highway safety estimation using traffic conflict technique. This study investigated which conflict indicator was more suitable for traffic safety estimation based on conflict-accident Pearson correlation analysis. First, a high-altitude unmanned aerial vehicle was used to collect multiple continuous high-precision videos of the Jinan-Qingdao highway. The vehicle trajectory data outputted from recognition of the videos were used to acquire conflict data following the procedure for each conflict indicator. Then, an improved indicator Ti was proposed based on the advantages and limitations of the conventional indicators. This indicator contained definitions and calculation for three types of traffic conflicts (rear-end, lane change and with fixed object). Then the conflict-accident correlation analysis of TTC (Time to Collision)/PET (Post Encroachment Time)/DRAC (Deceleration Rate to Avoid Crash)/Ti indicators were carried out. The results show that the average value of the correlation coefficient for each indicator with different thresholds are 0.670 for TTC, 0.669 for PET, and 0.710 for DRAC, and 0.771 for Ti, which Ti indicator is obviously higher than the other three conventional indicators. The findings of this study suggest TTC often fails to identify lane change conflicts, PET indicator easily misjudges some rear-end conflict when the speed of the following vehicle is slower than the leading vehicle, and PET is less informative than other indicators. At the same time, these conventional indicators do not consider the vehicle-fixed objects conflicts. The improved Ti can overcome these shortcomings; thus, Ti has the highest correlation. More data are needed to verify and support the study.


Author(s):  
D. H. Schuster

This paper reviews and discusses the measurement of attitudes toward traffic safety and the attempts to change these attitudes and related driving behavior. Psychological testing of such attitudes and personality characteristics is fairly well developed and there are some instruments of good reliability and useable validity. Efforts to modify driver attitudes and behavior are inconclusive and only mildly encouraging. Considerable research needs to be done before the attitudes and behavior of drivers can be changed to improve traffic safety in the United States.


Sign in / Sign up

Export Citation Format

Share Document