Statistical Analysis of Excavation Model of the Loess Landslide Developmental Characteristics

2015 ◽  
Vol 744-746 ◽  
pp. 601-605 ◽  
Author(s):  
Dong Qi Tang ◽  
Jiang Bing Peng

In recent years, with the increasing of excavation activity, caused the landslide more and more increasing, the landslide occurred gradually aroused public concern. For typical loess landslides caused by excavation, respectively from the distribution features of the landslide, landslide characteristics after wall, slope high on the impact of landslides and landslides trailing edge fracture characteristics were analyzed. Statistics show that the engineering loess landslides in the distribution respectively are selectivity of landform, strata of selectivity and zonal distribution. The excavation methods are rapid excavation and “eating” excavation. Landslide back wall angle is between 60-80°. The height of the scarp is between 3-20m, controlled by the thickness of the Malan loess. The slope high is more than 60m, with the increase of height. The risk of slide is higher. Trailing edge crack development is “wild goose feather” type and “bilateral ears” type. It provides conditions for trailing edge of evolution.

2011 ◽  
Vol 84-85 ◽  
pp. 259-263
Author(s):  
Xun Liu ◽  
Song Tao Wang ◽  
Xun Zhou ◽  
Guo Tai Feng

In this paper, the trailing edge film cooling flow field of a heavy duty gas turbine cascade has been studied by central difference scheme and multi-block grid technique. The research is based on the three-dimensional N-S equation solver. By way of analysis of the temperature field, the distribution of profile pressure, and the distribution of film-cooling adiabatic effectiveness in the region of trailing edge with different cool air injection mass and different angles, it is found that the impact on the film-cooling adiabatic effectiveness is slightly by changing the injection mass. The distribution of profile pressure dropped intensely at the pressure side near the injection holes line with the large mass cooling air. The cooling effect is good in the region of trailing edge while the injection air is along the direction of stream.


2016 ◽  
Author(s):  
Eva Jost ◽  
Annette Fischer ◽  
Galih Bangga ◽  
Thorsten Lutz ◽  
Ewald Krämer

Abstract. The present study investigates the impact of unsteady and viscous 3D aerodynamic effects on a wind turbine blade with trailing edge flap by means of Computational Fluid Dynamics (CFD). Harmonic oscillations are simulated on the DTU 10 MW rotor with a morphing flap of 10 % chord extent ranging from 70 % to 80 % blade radius. The deflection frequency is varied in the range between 1 p and 6 p. To quantify 3D effects, rotor simulations are compared to 2D airfoil computations and the 2D theory by Theodorsen. A significant influence of trailing and shed vortex structures has been found which leads to an amplitude reduction and hysteresis of the lift response in the flap section with regard to the deflection signal. For the 3D rotor results greater amplitude reductions and a less pronounced hysteresis is observed compared to the 2D airfoil case. Blade sections neighboring the flap experience however an opposing impact and hence partly compensate the negative effect of trailing vortices in the flap section in respect to integral loads. The comparison to steady flap deflections at the 3D rotor revealed the high influence of dynamic inflow effects.


2018 ◽  
Vol 167 ◽  
pp. 66-81 ◽  
Author(s):  
Seong Ryong Koh ◽  
Beckett Zhou ◽  
Matthias Meinke ◽  
Nicolas Gauger ◽  
Wolfgang Schröder

1993 ◽  
Vol 41 (2) ◽  
pp. 169 ◽  
Author(s):  
M Battaglia ◽  
JB Reid

The correlation between microsite and seedling numbers was determined in field sowings, and the impact of microsites on germination and seedling survival tested in artificial seedbeds in the glasshouse. Small scale variation in soil conditions, at the scale of tens of centimetres, markedly affected the germination and establishment of Eucalyptus delegatensis R.T.Baker seeds and seedlings. Under conditions of limiting soil moisture, microsites that afforded protection, and probably resulted in increased humidity, caused a marked increase in germination number and rate. The mean survival time was significantly higher on these protected microsites than on less protected microsites, or on microsites that restricted root penetration. The importance of this variability in microtopography was strongly influenced by season and the level of environmental stress, and was diminished as seedlings aged. Due to the different requirements for seed germination and seedling growth, a favourable microsite for germination was not necessarily a favourable site for seedling survival. A comparison of seed and seedling responses to water stress indicated that for E. delegatensis, at least, selection due to microsite differences at the time of germination may not have an impact on the developmental characteristics of the seedlings.


1996 ◽  
Author(s):  
Michael D. Hathaway ◽  
Jerry R. Wood

CFD codes capable of utilizing multi-block grids provide capability to analyze the complete geometry of centrifugal compressors including, among others, multiple splitter rows, tip clearance, blunt trailing edges, fillets, and slots between moving and stationary surfaces. Attendant with this increased capability is potentially increased grid setup time and more computational overhead — CPU time and memory requirements — with the resultant increase in “wall clock” time to obtain a solution. If the increase in “difficulty” of obtaining a solution significantly improves the solution from that obtained by modeling the features of the tip clearance flow or the typical bluntness of a centrifugal compressor’s trailing edge, then the additional burden is worthwhile. However, if the additional information obtained is of marginal use then modeling of certain features of the geometry may provide reasonable solutions for designers to make comparative choices when pursuing a new design. In this spirit a sequence of grids were generated to study the relative importance of modeling versus detailed gridding of the tip gap and blunt trailing edge regions of the NASA large low speed centrifugal compressor for which there is considerable detailed internal laser anemometry data available for comparison. The results indicate: 1) There is no significant difference in predicted tip clearance mass flow rate whether the tip gap is gridded or modeled. 2) Gridding rather than modeling the trailing edge results in better predictions of some flow details downstream of the impeller, but otherwise appears to offer no great benefits. 3) The pitchwise variation of absolute flow angle decreases rapidly up to 8% impeller radius ratio and much more slowly thereafter. Although some improvements in prediction of flow field details are realized as a result of analyzing the actual geometry there is no clear consensus that any of the grids investigated produced superior results in every case when compared to the measurements. However, if a multi-block code is available it should be used as it has the propensity for enabling better predictions than a single block code which requires modeling of certain geometry features. If a single block code must be used some guidance is offered for modeling those geometry features which can’t be directly gridded.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8327
Author(s):  
Roberto Pacciani ◽  
Michele Marconcini ◽  
Francesco Bertini ◽  
Simone Rosa Taddei ◽  
Ennio Spano ◽  
...  

This paper presents an assessment of machine-learned turbulence closures, trained for improving wake-mixing prediction, in the context of LPT flows. To this end, a three-dimensional cascade of industrial relevance, representative of modern LPT bladings, was analyzed, using a state-of-the-art RANS approach, over a wide range of Reynolds numbers. To ensure that the wake originates from correctly reproduced blade boundary-layers, preliminary analyses were carried out to check for the impact of transition closures, and the best-performing numerical setup was identified. Two different machine-learned closures were considered. They were applied in a prescribed region downstream of the blade trailing edge, excluding the endwall boundary layers. A sensitivity analysis to the distance from the trailing edge at which they are activated is presented in order to assess their applicability to the whole wake affected portion of the computational domain and outside the training region. It is shown how the best-performing closure can provide results in very good agreement with the experimental data in terms of wake loss profiles, with substantial improvements relative to traditional turbulence models. The discussed analysis also provides guidelines for defining an automated zonal application of turbulence closures trained for wake-mixing predictions.


Author(s):  
J. W. Kim ◽  
J. S. Lee ◽  
S. J. Song ◽  
T. Kim ◽  
H-. W. Shin

Experimental and numerical studies have been performed to investigate the effects of the leakage flow tangential velocity on the secondary flow and aerodynamic loss in an axial compressor cascade with a labyrinth seal. Six selected leakage flow tangential (vy/Uhub = 0.15, 0.25, 0.35, 0.45, 0.55 and 0.65) have been tested. In addition to the classical “secondary” flow, shroud trailing edge vortex and shroud leading edge vortex are examined. The overall loss decreases with increasing leakage flow tangential velocity. Increased leakage flow tangential velocity underturns the hub endwall flows through the blade passage, weakening the suction side hub corner separation. Due to the suction effect of the downstream cavity, increasing leakage flow tangential velocity weakens the shroud trailing edge vortex. Also, increasing leakage flow tangential velocity strengthens the shroud leading edge vortex, weakening the pressure side leg of the horseshoe vortex, and, in turn, the passage vortex. Thus, the overall loss is reduced with increasing leakage flow tangential velocity.


Landslides ◽  
2020 ◽  
Vol 17 (3) ◽  
pp. 677-686
Author(s):  
Wenhui Shi ◽  
Yanrong Li ◽  
Weiwei Zhang ◽  
Jin Liu ◽  
Shengdi He ◽  
...  

AbstractOn 15 March 2019, a fatal deep-seated landslide occurred at the village of Zaoling in Xiangning County of Shanxi Province, China. Extending to an area of about 120 m by 85 m, with an estimated displaced mass volume of 72,000 m3, the landslide left 20 people dead, 13 injured, and 8 buildings destroyed. There were no precursory signals prior to the event, and usual triggering mechanisms for a landslide were absent. Investigation conducted immediately after the incident revealed that the landslide was initiated in a 1.0 to 1.5-m thick-softened layer located at 40 m depth along the contact between the loess and interbedded paleosol layer. This softened layer was highly saturated due to the perched water on top of the relatively impervious paleosol layer and became a critical weak zone since the shear strength of loess is very sensitive to water content. We suggest that the perched water originated from extensive long-term unsaturated seepage of rainwater and local rapid percolation along preferential channels such as sinkholes and root network. The Zaoling landslide confirms that unlike most landslides in non-loess areas, loess landslides can occur without identifiable triggering events. They can result from gradual build up of instability due to slow (in the span of hundred years) accumulation of deep soil water. Based on the lessons learned from this landslide event, suggestions are given for the planning of urban and rural development in loess areas. Due to the fact that the process leading to the development of such a landslide is largely concealed, further research should be aimed at gaining a more thorough understanding of the mechanism of this landslide type.


Author(s):  
F. Bassi ◽  
S. Rebay ◽  
M. Savini

The aim of this work is to assess the accuracy of a “quasi-3d” Navier-Stokes solver equipped with the k-ω turbulence model in the computation of a film-cooled gas turbine blade under a variety of flow conditions. The “quasi-3d” formulation was chosen as a cheap approach to investigate a large number of test conditions for a nozzle of complex geometry (around 400 cooling holes) which would require a large computational effort for a truly 3d simulation. The developed code has been used to investigate the influence of various cooling geometries and blowing conditions (mass flow rate and/or density ratios) on the aerodynamic behaviour of the cascade (in terms of loading, losses and flow angles) and their impact on the mixing process downstream of the trailing edge. The investigated nozzle is an advanced design turbine vane working in high subsonic regime. It is characterized by a marked endwall contouring at the casing and by the presence of 12 rows of holes (including a trailing edge row of slots) so as to obtain full-coverage film-cooling of the solid surfaces. This vane has been extensively tested in the Politecnico di Milano Fluid Dynamics Laboratory (formerly C.N.P.M.) blowdown transonic wind tunnel and a great amount of data are therefore available for validation purposes. The uselfulness of the proposed approach is fully analyzed and discussed throughout the paper and it is shown that the relation between the cascade performance and the variation of the investigated parameters is correctly described. In addition we address and discuss which ejection boundary conditions and which loss definitions are best suited for a meaningful comparison with the experimental measurements. In conclusion, in the case considered the developed code seems to be a valuable tool to determine the impact of film-cooling on the aerodynamic performance of a gas turbine blade.


Sign in / Sign up

Export Citation Format

Share Document