Production and Characterization of Aluminium Metal Matrix Composite Reinforced with Al3Ni by Stir and Squeeze Casting

2015 ◽  
Vol 766-767 ◽  
pp. 315-319
Author(s):  
R. Ramesh ◽  
S. Suresh Kumar ◽  
S. Gowrishankar

In the present work AA1100/ Al3Ni MMC was successfully fabricated using the in-situ method of stirring and squeeze casting. The effects of amount of Ni powder on the formation and mechanical behavior of Al-Al3Ni MMC were investigated. The fabricated MMC was characterized using XRD and optical microscope. The XRD patterns clearly indicated the presence of Al3Ni particles without the formation of intermediate phases. The in-situ formed Al3Ni particles were found to have uniform distribution, good bonding and clear interface. The mechanical and tribological properties such as hardness, Ultimate Tensile Strength (UTS) and dry sliding wear behavior of AA1100/ Al3Ni MMC were compared for stir and squeeze casted MMCs with different percentage in weight of Al3Ni (5, 10 wt. %) and it was found that properties improved with increase in Al3Ni content and all properties of squeeze casted MMCs were superior to stir casted MMCs.

2017 ◽  
Vol 909 ◽  
pp. 100-105
Author(s):  
Kazunori Asano

Magnesium alloys, in which the in-situ Mg2Si particles were dispersed, were fabricated by a casting process, and the dry sliding wear behavior of the alloys was investigated. Optical microscopy revealed that the polygonal Mg2Si particles were homogeneously dispersed in the alloys. Mg2Si particle volume fractions in the alloys were 7 and 11 vol%. Although the wear loss of the alloy decreased due to the particle-dispersion, there was no difference in the wear loss between the alloys with different volume fractions. The worn surfaces of the particle-dispersed alloys were covered with the crumbled Mg2Si particles, which would prevent seizure between the alloy and the steel counterpart, leading to an improvement in the wear resistance of the alloy. The particle-dispersion slightly decreased the scatter of the coefficient of friction during the wear for the low sliding speed and load, but the effect of the dispersion was not clearly observed for the high speed and load.


2011 ◽  
Vol 415-417 ◽  
pp. 170-173
Author(s):  
Jing Wang ◽  
Si Jing Fu ◽  
Yi Chao Ding ◽  
Yi San Wang

A wear resistant TiC-Cr7C3/Fe surface composite was produced by cast technique and in-situ synthesis technique. The microstructure and dry-sliding wear behavior of the surface composite was investigated using scanning electron microscope(SEM), X-ray diffraction(XRD) and MM-200 wear test machine. The results show that the surface composite consists of TiC and Cr7C3as the reinforcing phase, α-Fe and γ-Fe as the matrix. The surface composite has excellent wear-resistance under dry-sliding wear test condition with heavy loads.


2014 ◽  
Vol 541-542 ◽  
pp. 263-267
Author(s):  
S. Baskaran ◽  
B.M. Muthamizh Selvan ◽  
V. Anandakrishnan ◽  
R. Venkatraman ◽  
Muthukannan Durai Selvam

The AA7075-4%TiC metal matrix composite produced through in-situ casting technique was hot extruded and subjected to annealing at 415°C for 150 minutes. Another set of hot extruded AA7075-4%TiC metal matrix composite was heat treated to T6 condition. Dry sliding wear test was conducted with different sliding speeds and loads for both annealed and T6 conditioned composites to compare their wear behaviour. It was observed that irrespective of the heat treatment conditions, the depth of wear, decreases with increasing sliding velocity for all the loads tested and increases with increasing load for all the sliding velocities.


2015 ◽  
Vol 819 ◽  
pp. 268-273 ◽  
Author(s):  
Ramli Rosmamuhamadani ◽  
Shamsuddin Sulaiman ◽  
Mohd Idris Shah Ismail ◽  
Mohamed Arif Azmah Hanim ◽  
Mahesh Talari

Tensile and wear properties of aluminium (Al) based metal matrix composites (MMCs) was prepared by added titanium diboride (TiB2) with in-situ technique by salt route. The salts used in this research were potassium hexafluorotitanate (K2TiF6) and potassium tetrafluoroborate (KBF4). Nanocomposite samples were prepared by casting technique associated with incorporating 3 and 6 wt.% of TiB2 into matrix of Al-6wt.%Cu. Instron and wear tests machine were used to characterize the tensile and wear Al-Cu alloys properties. Results showed that increase in TiB2 content gave the high properties of tensile and wear behavior. The study indicates that TiB2 particles have giving improvement the wear performance of the Al–6wt.%Cu alloy. For a constant load and sliding speed, the wear rate decreases as a function of amount of TiB2 in the composite. The wear rate decrease with increasing in wt.% TiB2 particles for the all loads applied. However, addition of TiB2 particle to the Al–6 wt%.Cu matrix has show the coefficient value of wear decreases regardless of applied load. Study of the wear surfaces both alloy and composites by optical microscope suggests that the improvement in wear resistance is mainly due to the formation of finer groove or debris by content of TiB2.


Wear ◽  
2011 ◽  
Vol 271 (5-6) ◽  
pp. 658-664 ◽  
Author(s):  
R.K. Gautam ◽  
S. Ray ◽  
Satish C. Sharma ◽  
S.C. Jain ◽  
R. Tyagi

2009 ◽  
Vol 131 (4) ◽  
Author(s):  
Anil K. Chaturvedi ◽  
K. Chandra ◽  
P. S. Mishra

In this study, dry sliding wear behavior of Al alloy (Al 2219) based metal matrix friction composites (AlMMFCs) incorporated with varying percentage of ingredients: silicon carbide particles (15–25 wt %SiCp) and solid lubricants with 4 wt % graphite and 1 wt % antimony trisulphide (Sb2S3) were investigated. A group of four new chemical formulations, three binary composites of Al/SiCp (Al01N, Al02N, and Al03N), and a hybrid composite of Al/SiCp/solid lubricants (Al04N) were fabricated by newly a developed “cold-hot powder die compaction” method. Physical and mechanical properties were measured as usual. To measure tribological properties, dry pin-on-disk wear tests were conducted for 1 hour at varying loads of 1 MPa and 2 MPa and at sliding speeds of 3 m/s, 5 m/s, 7 m/s, and 9 m/s. The results revealed that the incorporation of SiCp from 15 wt % to 25 wt % in binary composite, density (2.8–2.9 g/cc), apparent porosity (1.4–3.4 vol %), and hardness (78–93 BHN) were increased. For hybrid composite, density (2.9–2.76 g/cc) and hardness (93–81 BHN) were decreased with the increase in apparent porosity (3.4–4.1 vol %). It was concluded that the obtained density is higher than the reported density and the obtained apparent porosity is much lower than the reported apparent porosity by Aigbodi et al. (2007, “Effects of Silicon Carbide Reinforcement on Microstructure and Properties of Cast Al–Si–Fe/Sic Particulate Composites,” Mater. Sci. Eng., A, 447, pp. 355–360) for same composition using “double stir casting” method. The value of coefficient of friction with addition of solid lubricants increased and steady at high load and speed (2 MPa, >5 m/s).The microstructures, worn surfaces, and tribolayers are also analyzed by an optical microscope and SEM. This study overviews AlMMFCs incorporated with hard particles and solid lubricants and the new technology for producing brake lining parts from these novel materials.


2018 ◽  
Vol 141 (2) ◽  
Author(s):  
Roshita David ◽  
Rupa Dasgupta ◽  
B. K. Prasad

The in situ method of making zinc-aluminum composites wherein TiC has been introduced has been investigated in the present paper for its microstructural, physical, and dry sliding wear behavior and compared with the base alloy. In the present study, ZA-27 alloy reinforced with 5 and 10 vol % TiC was taken into consideration. The results indicate that the wear rate and coefficient of friction of composites were lower than that of base alloy. The material loss in terms of both wear volume loss and wear rate increases with increase in load and sliding distance, respectively, while coefficient of friction follows a reverse trend with increase in load. Better performance was obtained for 5% TiC reinforcement than with 10% probably due to agglomeration of particles resulting in nonuniform dispersion. Worn surfaces were analyzed by scanning electron microscopy (SEM) analysis.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0250903
Author(s):  
Matthias C. Wapler ◽  
Frederik Testud ◽  
Patrick Hucker ◽  
Jochen Leupold ◽  
Dominik von Elverfeldt ◽  
...  

We present the development of a dual-mode imaging platform that combines optical microscopy with magnetic resonance microscopy. Our microscope is designed to operate inside a 9.4T small animal scanner with the option to use a 72mm bore animal RF coil or different integrated linear micro coils. With a design that minimizes the magnetic distortions near the sample, we achieved a field inhomogeneity of 19 ppb RMS. We further integrated a waveguide in the optical layout for the electromagnetic shielding of the camera, which minimizes the noise increase in the MR and optical images below practical relevance. The optical layout uses an adaptive lens for focusing, 2 × 2 modular combinations of objectives with 0.6mm to 2.3mm field of view and 4 configurable RGBW illumination channels and achieves a plano-apochromatic optical aberration correction with 0.6μm to 2.3μm resolution. We present the design, implementation and characterization of the prototype including the general optical and MR-compatible design strategies, a knife-edge optical characterization and different concurrent imaging demonstrations.


Sign in / Sign up

Export Citation Format

Share Document