Development and Property Evaluation of Fiber Reinforced Hybrid Epoxy Laminate Composite: Jute/E-Glass/Carbon-Fabric-Final Revision

2015 ◽  
Vol 787 ◽  
pp. 534-537
Author(s):  
B. Adaveesh ◽  
K.C. Anil ◽  
M. Vishwas ◽  
R.P. Archana

In this investigation, conventional hand layup method was employed to fabricate hybrid epoxy laminate composite. Jute fiber, E-glass fiber and carbon fiber fabrics of 500,200,200 gsm respectively were used as a reinforcements and epoxy with k-6 hardener was used as a matrix material. Tensile, compression and flexural tests were conducted as per the ASTM standards. It is observed that jute/carbon/epoxy laminate of 2mm thickness plate exhibits significant mechanical properties compare to jute/glass/epoxy laminate of 2mm laminate composite.

2022 ◽  
Vol 23 (1) ◽  
pp. 339-348
Author(s):  
Santhosh priya Karjala ◽  
Vijay Kumar Kuttynadar Rajammal ◽  
Suresh Gopi ◽  
Rajesh Ravi ◽  
Devanathan Chockalingam ◽  
...  

The main objective of this study is to compare the interpenetrating polymer networks’ (IPNs) physical strengths with different variants of fibers. In this study, E-glass, carbon, and a combination of E-glass and carbon fiber (hybrid) have been taken as the reinforcement. Similarly, three combinations of the IPNs were chosen as the matrix material, namely epoxy / polyurethane (EP), vinyl ester / polyurethane (VP) and epoxy/vinyl ester (EV) as IPN blends. In order to thoroughly understand the physical characteristics of the combination of blends and fibers, nine variants (laminates) were fabricated: combinations of epoxy / polyurethane / E-glass (EPG), epoxy / polyurethane / carbon (EPC), epoxy / vinyl ester / glass / carbon (EPGC-hybrid), vinyl ester / polyurethane / glass (VPG), vinyl ester / polyurethane / carbon (VPC), vinyl ester / polyurethane / glass / carbon (VPGC), epoxy / vinyl ester / glass (EVG), epoxy / vinyl ester / carbon (EVC), and epoxy / vinyl ester / glass / carbon (EVGC-hybrid), all with help of a hand-layup technique. Furthermore, mechanical tests such as tensile, flexural, impact, and HDT (heat distortion temperature) were performed on all the variants as per the ASTM standards. Results shows that carbon fiber reinforcement with all IPN combinations has shown extraordinary performance (double fold) over the E-glass fiber reinforcement, whereas the hybrid (combination of E-glass/carbon) laminates have shown excellent characteristics over E-glass fiber reinforcement, irrespective of IPN matrix material. All the results were compared with each other and their corresponding variations were plotted as bar charts. ABSTRAK:  Objektif utama kajian ini adalah bagi membandingkan kekuatan fizikal rangkaian polimer saling menusuk (IPN) dengan pelbagai jenis gentian berbeza. Kajian ini mengguna pakai gentian kaca-E, karbon dan gabungan kaca-E dan gentian karbon (hibrid) sebagai penguat. Begitu juga, tiga kombinasi IPN dipilih sebagai bahan matrik, iaitu epoksi / poliuretan (EP), ester vinil / poliuretan (VP) dan epoksi / ester vinil (EV) sebagai campuran IPN. Bagi tujuan memahami secara mendalam ciri-ciri fizikal gabungan campuran dan gentian, sembilan varian (lamina) dihasilkan, malaui kombinasi seperti epoksi / poliuretan / kaca-E (EPG), epoksi / poliuretan / karbon (EPC), epoksi / ester vinil / kaca / karbon (EPGC-hibrid), ester vinil / poliuretan / kaca (VPG), ester vinil / poliuretan / karbon (VPC), ester vinil / poliuretan / kaca / karbon (VPGC), epoksi / ester vinil / kaca (EVG), epoksi / ester vinil / karbon (EVC), epoksi / ester vinil / kaca / karbon (EVGC-hibrid) dengan teknik susun atur lapisan menggunakan tangan. Selain itu, ujian mekanikal seperti tegangan, lenturan, hentaman dan HDT (suhu kelenturan panas) dilakukan pada semua varian mengikut piawaian ASTM. Dapatan kajian menunjukkan bahawa, penguat gentian karbon dengan semua kombinasi IPN telah menunjukkan prestasi luar biasa (dua kali ganda) daripada penguat gentian kaca-E, manakala lamina hibrid (campuran kaca-E / karbon) telah menunjukkan ciri-ciri sangat baik berbanding penguat gentian kaca-E tanpa mengira bahan matrik IPN. Semua hasil dapatan dibandingkan antara satu sama lain dan padanan variasi diplot sebagai carta bar.


2010 ◽  
Vol 442 ◽  
pp. 52-58
Author(s):  
M.A. Bashir ◽  
H. Ahmad ◽  
R. Ahmed ◽  
R.A. Alvi ◽  
Mohammad Bilal Khan

Ablative composites are heat shielding, protective materials that are being used in aerospace industry to protect inner hardware and sensitive devices. The aero dynamic vehicles have to face high stresses, ultra high temperature and adverse conditions of air friction. It is required to develop the materials with light weight and high modulus. EPDM, being heat and ozone attack resistant is the best candidate for the preparation of ablative composites by introducing different heat sinks such as silica, glass fiber, carbon fiber, asbestos, carbon and their combinations have been studied in this work. The prepared materials were tested and it was found that visco elastic behavior of the composites affected by the addition of reinforcing filler (carbon, silica), semi-reinforcing filler (carbon fiber, glass fiber) and non-reinforcing filler (asbestos powder). Mechanical properties tested at different rates, revealed the improvement in tensile strength and % elongation in case of reinforcing and semi-reinforcing fillers but showed adverse effect in case of non-reinforcing fillers. Rheological investigations of these novel composites shows that moony viscosity of the materials containing glass fiber, carbon fiber, silica decreases in the order glass fiber > carbon fiber > silica.


2013 ◽  
Vol 212 ◽  
pp. 59-62 ◽  
Author(s):  
Jerzy Myalski ◽  
Jakub Wieczorek ◽  
Adam Płachta

The change of matrix and usage of the aluminum alloys designed for the metal forming in making the composite suspension allows to extend the processing possibility of this type of materials. The possibility of the metal forming of the composites obtained by mechanical mixing will extend the range of composite materials usage. Applying of the metal forming e.g. matrix forging, embossing, pressing or rolling, will allow to remove the incoherence of the structure created while casting and removing casting failures. In order to avoid the appearance of the casting failures the homogenization conditions need to be changed. Inserting the particles into the matrix influences on the shortening of the composite solidification. The type of the applied particles influenced the sedimentation process and reinforcement agglomeration in the structure of the composite. Opposite to the composites reinforced with one-phase particles applying the fasess mixture (glassy carbon and silicon carbide) triggered significant limitation in the segregation process while casting solidification. Inserting the particles into the AW-AlCu2SiMn matrix lowers the mechanical properties tension and impact value strength. The most beneficial mechanical properties were gained in case of heterofasess composites reinforced with the particle mixture of SiC and glass carbon. The chemical composition of the matrix material (AW-AlCu2SiMn) allows to increase additionally mechanical characteristics by the precipitation hardening reached through heat casting forming.


2020 ◽  
Vol 398 ◽  
pp. 76-82 ◽  
Author(s):  
Saif M. Abbas

In this research, two groups of composite materials were used for manufacturing Above –Knee (AK) prosthetic socket. These sockets were fabricated from resin lamination (80:20) siegalharz as matrix materials, N-glass and carbon as reinforced materials using vacuum pressure. The mechanical properties for materials that used in above knee socket were tested by tensile, bending and fatigue tests. The results showed the mechanical properties of (N-glass - carbon fiber-N-glass) with matrix of lamination (80:20) resin were: Ϭy= 112Mpa, Ϭult=132MPa, Ϭb max=57Mpa, E=1.74GPa and The elongation at Beak was 3.5mm. In addition, the test result of (N-glass - carbon fiber-N-glass) with matrix of siegalharz resin were Ϭy= 123Mpa, Ϭult=151MPa, Ϭb max=174Mpa, E=2.64GPa and the elongation at Beak was3.3mm. Interface pressure was measured for above knee prosthetic socket and the patient age (30years) , height (165 cm) and weight (83 kg). High pressure values of (190Kpa) and (164Kpa) were recorded for the anterior and lateral sections respectively. This is because of the anterior and lateral muscles action which tend to be more active during the movement of the patient. The numerical results showed that the safety factor for (N-glass - carbon fiber-N-glass) with matrix lamination of (80:20) resin was found to be 0.595in addition the safety factor for (N-glass - carbon fiber-Nglass) with matrix of siegalharz resin was numerically calculated to be 1.084 which is safe in design.


2020 ◽  
Vol 4 (1) ◽  
pp. 5
Author(s):  
Nhan Thi Thanh Nguyen ◽  
Obunai Kiyotaka ◽  
Okubo Kazuya ◽  
Fujii Toru ◽  
Shibata Ou ◽  
...  

In this research, three kinds of carbon fiber (CF) with lengths of 1, 3, and 25 mm were prepared for processing composite. The effect of submicron glass fiber addition (sGF) on mechanical properties of composites with different CF lengths was investigated and compared throughout static tests (i.e., bending, tensile, and impact), as well as the tension-tension fatigue test. The strengths of composites increased with the increase of CF length. However, there was a significant improvement when the fiber length changed from 1 to 3 mm. The mechanical performance of 3 and 25 mm was almost the same when having an equal volume fraction, except for the impact resistance. Comparing the static strengths when varying the sGF content, an improvement of bending strength was confirmed when sGF was added into 1 mm composite due to toughened matrix. However, when longer fiber was used and fiber concentration was high, mechanical properties of composite were almost dependent on the CF. Therefore, the modification effect of matrix due to sGF addition disappeared. In contrast to the static strengths, the fatigue durability of composites increased proportionally to the content of glass fiber in the matrix, regardless to CF length.


2020 ◽  
Vol 858 ◽  
pp. 78-83
Author(s):  
Dae Won Kim ◽  
Jun Park ◽  
Chul Kyu Jin ◽  
Hyung Yoon Seo ◽  
Chung Gil Kang

Carbon fabric-reinforced thermoplastic (CFRP) composites, fortified with carbon fiber prepreg and epoxy base materials, have been mainly used for body parts for weight lightening, advanced high strength, and impact absorption In the current automotive industry However, as recycling of the composite material is required, attempts have been made to manufacture body parts using a thermoplastic polymeric material as a base substance. In order to produce various types of body parts by impregnating a liquid thermoplastic material into carbon fabric preform in methods of manufacturing a carbon fiber-reinforced thermoplastic composite material (CFRTP), it is important to understand the effect of the impregnation process parameters (time, temperature, pressing force) on the mechanical properties of the composite material. Therefore, in this study, the influence of impregnation process parameters on the mechanical properties of CFRTP is proposed. In addition, this paper presents the problems and solutions when polymeric materials are impregnated in carbon fabric.


2013 ◽  
Vol 365-366 ◽  
pp. 1148-1151 ◽  
Author(s):  
Jia Horng Lin ◽  
Zheng Yan Lin ◽  
Jin Mao Chen ◽  
Chen Hung Huang ◽  
Ching Wen Lou

This study produces the far-infrared emitting composites by using impact-resistant polypropylene, short glass fibers, and far-infrared masterbatches. The addition of short glass fiber and far-infrared masterbatches is then evaluated to determine their influence on the mechanical properties and far-infrared emissivity of the resulting composites. The experimental results show that with an increase in the content of short glass fibers, the tensile strength increases from 34 MPa to 56 MPa, the far-infrared emissivity increases from 0.85 to 0.93, but the impact strength decreases from 1037 J/m to 197 J/m, proving that the resulting composites have desired mechanical properties and far-infrared emission.


2013 ◽  
Vol 577-578 ◽  
pp. 77-80 ◽  
Author(s):  
Hideaki Katogi ◽  
Kenichi Takemura

In this study, effect of crystallinity on mechanical properties of carbon fiber reinforced thermoplastics (CFRTP) was investigated. Polypropylene (PP) and maleic anhydride modified polypropylene (MAPP) were used as matrix. The crystallinity of PP was controlled by using heat treatment after hot press molding of CFRTP. The range of crystallinity of PP and MAPP were from 26% to 40%. Flexural tests and izod impact tests of CFRTP were conducted based on Japanese Industrial Standard (JIS) K 7074 and JIS K 7110, respectively. As a result, flexural property and izod impact value of CFRTP using PP increased with an increase of crystallinity. However, flexural property and izod impact value of CFRTP using MAPP almost did not change with an increase of crystallinity.


Sign in / Sign up

Export Citation Format

Share Document