Impact of Tool Inserts in High Speed Machining of GFRP Composite Material

2015 ◽  
Vol 787 ◽  
pp. 664-668 ◽  
Author(s):  
K. Anand ◽  
M.V. Siddharth ◽  
K.S. Vijay Sekar ◽  
S. Suresh Kumar

Composite materials are in-homogenous, anisotropic and cause high tool wear at high cutting speeds in machining. Industrial practices worldwide reveal a need to use high speed machining to achieve the desired material removal rate, surface finish and to reduce cost cutting. In this research work, impact of turning glass fibre reinforced polymer tube with two contrasting turning tool inserts such as titanium aluminium nitride and tungsten carbide have been analysed. The turning was conducted at low to high cutting conditions up to spindle speeds of 2000 rpm and feed rate of 0.446mm/rev. The cutting force, feed force were acquired with a strain gauge based dynamometer, the chip cross section was observed using scanning electron microscopy and the temperature was sensed with a infra red thermo sensor. The advanced titanium aluminium nitride insert shows better machining characteristics across cutting speeds.

Author(s):  
Y. J. Lin ◽  
Samir A. Khrais

The tribological influences of PVD-applied TiAlN coatings on the wear of cemented carbide inserts and the microstructure wear behaviors of the coated tools under dry and wet machining are investigated. The turning test was conducted with variable high cutting speeds ranging from 210 m/min to 410m/min. The analyses based on the experimental results lead to strong evidences that conventional coolant has a retarded effect on TiAlN coatings under high-speed machining. Microwear mechanisms identified in the tests through SEM micrographs include edge chipping, micro-abrasion, micro-fatigue, micro-thermal, and micro-attrition. These micro-structural variations of coatings provide structure-physical alterations as the measures for wear alert of TiAlN coated tool inserts under high speed machining of steels.


2017 ◽  
Vol 889 ◽  
pp. 84-89
Author(s):  
Pandithevan Ponnusamy ◽  
Mullapudi Joshi

In high speed machining, to dynamically control the mechanical behaviour of the materials, it is essential to control temperature, stress and strain by appropriate speed, feed and depth of cut. In the present work, to predict the mechanical behaviour of Ti6Al4V and 316L steel bio-materials an explicit dynamic analysis with different cutting speeds was carried out. Orthogonal cutting of 316L steel and Ti6Al4V materials with 720 m/min, 900 m/min and 1200 m/min cutting speeds was performed, and the distribution of stress and temperature was investigated using Jonson-Cook material model. Additionally, the work aimed at determining the effect of cutting speed on work piece temperature, when cutting is carried out continuously. From the investigation, it was found that, while machining Ti6Al4V material, for the increase in cutting speed there was increase in tool-chip interface temperature. Specifically, this could found till the cutting speed 900 m/min. But, there was a decrease in tool-chip interface temperature for the increase in speed from 900 m/min to 1200 m/min. Similarly for 316L steel, the tool-chip interface temperature increased when increasing the cutting speed till 900 m/min. But reduction in temperature from 650 °C to 500 °C for steel and 1028 °C to 990 °C for Ti6Al4V were found, when the cutting speed increased from 900 m/min to 1200 m/min. The study can be used to conclude, at what temperature range the adoption of material with controlled shape and geometry is possible for potential applications like, prosthetic design and surgical instruments prior to fabrications.


2011 ◽  
Vol 188 ◽  
pp. 578-583 ◽  
Author(s):  
Toshiyuki Obikawa ◽  
Masahiro Anzai ◽  
Tsuneo Egawa ◽  
Norihiko Narutaki ◽  
Kazuhiro Shintani ◽  
...  

This paper describes strong nonlinearity in log V-log L relationship, which is often found in machining of supperalloys, titanium alloys, hardened steels, cast irons, etc. The nonlinearity plays an important and favorable role in extension of life-span cutting distance at higher cutting speeds; that is, in a certain range of cutting speed, life-span cutting distance increases with cutting speed. Results of tool wear in a sliding test and cutting experiments, which showed the evidences of strong nonlinearity, were investigated and the mechanisms causing the nonlinearity were discussed.


2016 ◽  
Vol 836-837 ◽  
pp. 161-167
Author(s):  
Anna Thouvenin ◽  
Xin Li ◽  
Ning He ◽  
Liang Li

High speed milling is one of the most commonly used machining processes in many fields of the industry. It is regarded as a simple and fast solution to achieve a high material removal rate, which allows an important production of parts. Unbalance is a problem in any machining process but becomes a considerable problem when reaching high speed machining. The vibrations due to an unbalanced tool or tool holder can result in a poor surface quality and a damaged tool. The damping of the vibrations can be achieved with a specially designed tool showing an anti-vibration clearance angle. This paper shows the influence of the anti-vibration clearance angle by a computational model and a set of experiments to see if it can reduce or suppress the vibrations due to unbalance in high speed milling.


1973 ◽  
Vol 187 (1) ◽  
pp. 625-634 ◽  
Author(s):  
G. Arndt

As part of the search for a new cutting mechanism, a few largely empirical investigations into ultra-high-speed machining (velocity greater than 500 ft/s) have been performed in the past. A comprehensive review of this and other work related to machining at very high cutting speeds is presented and the physical factors predominating in UHSM are discussed. As a consequence of this a new theory of cutting forces at ultra-high speeds is presented, based on inertia and temperature effects, adiabatic shear, and strain-rate dependent yield stress. This theory shows that workpiece properties greatly influence force behaviour, the latter determining the feasibility of machining at ultra-high speeds.


Materials ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 3749 ◽  
Author(s):  
Adel T. Abbas ◽  
Neeraj Sharma ◽  
Saqib Anwar ◽  
Faraz H. Hashmi ◽  
Muhammad Jamil ◽  
...  

Nowadays, titanium alloys are achieving a significant interest in the field of aerospace, biomedical, automobile industries especially due to their extremely high strength to weight ratio, corrosive resistance, and ability to withstand higher temperatures. However, titanium alloys are well known for their higher chemical reactive and low thermal conductive nature which, in turn, makes it more difficult to machine especially at high cutting speeds. Hence, optimization of high-speed machining responses of Ti–6Al–4V has been investigated in the present study using a hybrid approach of multi-objective optimization based on ratio analysis (MOORA) integrated with regression and particle swarm approach (PSO). This optimization approach is employed to offer a balance between achieving better surface quality with maintaining an acceptable material removal rate level. The position of global best suggested by the hybrid optimization approach was: Cutting speed 194 m/min, depth of cut of 0.1 mm, feed rate of 0.15 mm/rev, and cutting length of 120 mm. It should be stated that this solution strikes a balance between achieving lower surface roughness in terms of Ra and Rq, with reaching the highest possible material removal rate. Finally, an investigation of the tool wear mechanisms for three studied cases (i.e., surface roughness based, productivity-based, optimized case) is presented to discuss the effectiveness of each scenario from the tool wear perspective.


1973 ◽  
Vol 187 (1) ◽  
pp. 625-634 ◽  
Author(s):  
G. Arndt

As part of the search for a new cutting mechanism, a few largely empirical investigations into ultra-high-speed machining (velocity greater than 500 ft/s) have been performed in the past. A comprehensive review of this and other work related to machining at very high cutting speeds is presented and the physical factors predominating in UHSM are discussed. As a consequence of this a new theory of cutting forces at ultra-high speeds is presented, based on inertia and temperature effects, adiabatic shear, and strain-rate dependent yield stress. This theory shows that workpiece properties greatly influence force behaviour, the latter determining the feasibility of machining at ultra-high speeds.


1997 ◽  
Vol 119 (4B) ◽  
pp. 664-666 ◽  
Author(s):  
S. Smith ◽  
J. Tlusty

The focus of the majority of high-speed machining research has been directed toward improving metal removal rates. Tool materials capable of withstanding high cutting speeds have become available (silicon nitride for cast iron, solid carbide for aluminum, and superabrasives for hardened steels), and the focus of research has shifted to maximizing the cutting performance of the machine tool. Measurement of cutting performance, chatter avoidance, structural design, tool retention, and axis control have become important research topics. The purpose of this paper is to provide an overview of the state of the art in high-speed machining and to provide our view of the emerging research areas.


10.30544/472 ◽  
2020 ◽  
Vol 26 (3) ◽  
pp. 303-316
Author(s):  
M. Hatami ◽  
H. Safari

In this paper, L8 Taguchi array is applied to find the most important parameters effects on the radial and tangential cutting forces of a Ti–6Al-4V ELI titanium alloy in dry high speed machining (DHSM). The experiments are performed in four cutting speeds of 150, 200, 250, and 300 m/min and two feed rates of 0.03 and 0.06 mm/rev. Also, two cutting tools in types of XOMX090308TR-ME06 of uncoated (H25) and TiAlN+TiN coated (F40M) are used. Results confirm that to minimize the resultant cutting force and radial cutting force, utilizing the lower feed rate and higher cutting speeds were considered as the best levels of factors to reach to its goal.


Author(s):  
Nor Aznan Mohd Nor ◽  
BT Hang Tuah Baharudin ◽  
Jaharah A Ghani ◽  
Mohd Khairol Anuar Mohd Ariffin ◽  
Zulkiflle Leman ◽  
...  

Cutting force is vital in machining nickel-based superalloys due to their excellent mechanical properties, thus creating difficulty in cutting. In the current scenario of metal machining, milling processes require high spindle speed and low chip load, which result in a low cutting force. However, low chip load not only result in low cutting force but also result in a low material removal rate (MRR). It is contrary to the ultimate high-speed machining (HSM) goal, which is to improve productivity and cost-effectiveness. Therefore, the emergence of an approach for achieving simultaneous low cutting force and high MRR is crucial. This paper presents the effect of increasing spindle speed at a constant chip load on the cutting force of Hastelloy X during half-immersion up-milling and half-immersion down-milling. In both half-immersions, the simulation results and experimental results are in good agreement. The percentage contribution of feed force, normal force and axial force to the resultant force can be arranged descendingly from high to low as axial force > normal force > axial force. Moreover, feed force, normal force, axial force and resultant force have a U-shaped behaviour. The spindle speed of 24,100 rpm and a chip load of 0.019 mm/tooth were found to achieve both low cutting force and high MRR.


Sign in / Sign up

Export Citation Format

Share Document