scholarly journals Study of the Influence of Technological Parameters on Generating Flat Part with Cylindrical Features in 3D Printing with Resin Cured by Optical Processing

Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1941
Author(s):  
Aurel Tulcan ◽  
Mircea Dorin Vasilescu ◽  
Liliana Tulcan

The objective of this paper is to determine how the supporting structure in the DLP 3D printing process has influences on the characteristics of the flat and cylindrical surfaces. The part is printed by using the Light Control Digital (LCD) 3D printer technology. A Coordinate Measuring Machine (CMM) with contact probes is used for measuring the physical characteristics of the printed part. Two types of experiment were chosen by the authors to be made. The first part takes into consideration the influence of the density of the generated supports, at the bottom of the printed body on the characteristics of the flat surface. In parallel, it is studying the impact of support density on the dimension and quality of the surface. In the second part of the experiment, the influence of the printed supports dimension on the flatness, straightness and roundness of the printed elements were examined. It can be observed that both the numerical and dimensional optimum zones of the support structure for a prismatic element could be determined, according to two experiments carried out and the processing of the resulting data. Based on standardized data of flatness, straightness and roundness, it is possible to put in accord the values determined by measurement within the limits of standardized values.

Author(s):  
Андрей Киричек ◽  
Andrey Kirichek ◽  
Дмитрий Соловьев ◽  
Dmitriy Solovyev ◽  
Александр Хандожко ◽  
...  

The problems of analyzing metallographic images and the method of their solution using modern software for the analysis of metallographic images are described. There is given an analysis of microstructure images as the main indicator of the surface layer quality by the example of studying the research results of strain wave hardening combinations and chemical-thermal treatment, in particular the influence of previous strain wave hardening and subsequent thermal and chemical- thermal treatment on the alloy steel microstructure or previous thermal and chemical- thermal treatment and subsequent strain wave hardening. On the basis of the analysis the effectiveness of strain wave hardening and chemical and thermal treatment is established.


“Slicing tool” or “Slicing Software” computes the intersection curves of models and slicing planes. They improve the quality of the model being printed when given in the form of STL file. Upon analyzing a specimen that has been printed using two different slicing tools, there was a drastic variation on account of the mechanical properties of the specimen. The ultimate tensile strength and the surface roughness of the material vary from one tool to another. This paper reports an investigation and analysis of the variation in the ultimate tensile strength and the surface roughness of the specimen, given that the 3D printer and the model being printed is the same, with a variation of usage of slicing software. This analysis includes ReplicatorG, Flashprint as the two different slicing tools that are used for slicing of the model. The variation in the ultimate tensile strength and the surface roughness are measured and represented statistically through graphs. An appropriate decisive conclusion was drawn on the basis of the observations and analysis of the experiment on relevance to the behavior and mechanical properties of the specimen.


Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1758
Author(s):  
Nectarios Vidakis ◽  
Markos Petousis ◽  
Nikolaos Vaxevanidis ◽  
John Kechagias

An experimental investigation of the surface quality of the Poly-Jet 3D printing (PJ-3DP) process is presented. PJ-3DP is an additive manufacturing process, which uses jetted photopolymer droplets, which are immediately cured with ultraviolet lamps, to build physical models, layer-by-layer. This method is fast and accurate due to the mechanism it uses for the deposition of layers as well as the 16 microns of layer thickness used. Τo characterize the surface quality of PJ-3DP printed parts, an experiment was designed and the results were analyzed to identify the impact of the deposition angle and blade mechanism motion onto the surface roughness. First, linear regression models were extracted for the prediction of surface quality parameters, such as the average surface roughness (Ra) and the total height of the profile (Rt) in the X and Y directions. Then, a Feed Forward Back Propagation Neural Network (FFBP-NN) was proposed for increasing the prediction performance of the surface roughness parameters Ra and Rt. These two models were compared with the reported ones in the literature; it was revealed that both performed better, leading to more accurate surface roughness predictions, whilst the NN model resulted in the best predictions, in particular for the Ra parameter.


2011 ◽  
Vol 105-107 ◽  
pp. 1899-1902 ◽  
Author(s):  
Xiao Wei Zhang ◽  
Xing Hua Li ◽  
Bo Chen

In this paper, the mathematical model with errors for parallel double-joint coordinate measuring machine (CMM) was proposed. The main factor of the impact of circular grating measurement error--radial install eccentric error--was analyzed. The error was measured and the data obtained from measurement was used to curve fitting and form the error compensation formula. Experiments show that the method of error compensation has good usability and accuracy.


2021 ◽  
Vol 2 (1 (110)) ◽  
pp. 70-80
Author(s):  
Oleksii Vambol ◽  
Andrii Kondratiev ◽  
Svitlana Purhina ◽  
Maryna Shevtsova

The mass application of FDM technology is slowed down due to the difficulty of selecting 3D printing parameters in order to manufacture an article with the required characteristics. This paper reports a study into the impact of 3D printing parameters (temperature, print speed, layer height) on mechanical parameters (strength, elasticity module), as well as on the accuracy of printing and roughness of the surface of a specimen based on thermoplastic (PLA plastic). Several batches of specimens were fabricated for this study in accordance with ASTM D638 and ASTM D695, which were tested for tension, geometric accuracy, and roughness. Based on the experimental data, regression analysis was carried out and the functional dependences of the strength, elasticity module, printing precision, roughness of a surface on 3D printing parameters (temperature, speed, thickness of the layer) were constructed. In addition, the derived mathematical model underlying a method of non-linear programming has established such printing parameters that could provide for the required properties of a structure. The analytical dependences reported in the current work demonstrate a high enough determination factor in the examined range of parameters. Using functional dependences during the design phase makes it possible to assess the feasibility of its manufacture with the required properties, reduce the time to work out the process of printing it, and give recommendations on the technological parameters of 3D printing. The recommendations from this study could be used to make PLA-plastic articles for various purposes with the required properties


2021 ◽  
Vol 12 (2) ◽  
pp. 371-380
Author(s):  
Sally Cahyati ◽  
◽  
Haris Risqy Aziz

Rapid Prototyping (RP) is a manufacturing process that produces a 3D model CAD to be a real product rapidly by using additive manufacturing technology. In this case, the product will print layer by layer uses a 3D printer machine. The 3D printer requires slicer software to convert CAD data into data that a 3D printer machine can read. Research is done to analyze the effect of three kinds of slicer software on 3D printing objects on the accuracy and surface roughness of the product. The 3D model CAD is sliced using three different slicer software, namely Ideamaker, Repetier Host, and Cura. The slice model result from each slicer will be printed on a 3D printer machine with the same process parameters to be compared. Then the product's dimensional and surface roughness will be measured to determine the effect of each slicer on product quality. The best quality of the product reflected the most suitable slicer software for the 3D printing machine that used. The best results achieved by Cura slicer because it has resulted in small dimensional deviations (max 0,0308±0,0079) and stabile high surface roughness of the product (max 1,585+059).


Metals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 299
Author(s):  
Xintao Zhu ◽  
Fu Wang ◽  
Dexin Ma ◽  
Andreas Bührig-Polaczek

In this article, the feasibility and the dimensional accuracy based on the 3D printing technology during investment casting of non-vacuum and Bridgman furnace are investigated based on the coordinate measuring machine to calculate the dimensional tolerances through a systematic approach. The research proved that both the investigated RC solutions are effective at obtaining cast technological prototypes in short times and at low cost, with dimensional tolerances that are completely consistent with metal casting processes.


2018 ◽  
Vol 232 ◽  
pp. 02015
Author(s):  
Zhihua Jiang ◽  
Wenjian Zhang ◽  
Lizhen Cui

Three dimensional laser scanning coordinate measuring machine is suitable for the measurement of 3D printing products, and its measuring range depends on the three coordinate measuring machine. It is the main 3D printing product measuring instrument [1]. In this paper, the principle of laser scanning three coordinate measuring machine is analyzed. The accuracy and reliability of the calibration system for 3D printing products are verified. According to the newly revised JJF 1064 Calibration specification for coordinate measuring machines [3], it is calibrated.


2021 ◽  
Vol 902 ◽  
pp. 101-106
Author(s):  
Khompee Limpadapun ◽  
Jenjira Sukmanee

This study investigated characteristics of moisture desorption for polylactic acid (PLA) filaments. The filaments tend to absorb moisture from humid air, led to moisten filaments. The absorption of even small amounts of moisture by filaments during storage and/or 3D printing, degraded the quality of final parts, and therefore, caused manufacturing problems. In this work, the filaments were subjected to humid conditions to achieve various moisture concentrations (0.75, 1.3 and 1.87 wt.%). Warm air-drying processes are used to reduce the moisture for different times (1, 2, 3, 4, 5 and 6 hours) and temperature (40, 50 and 60 °C). It was founded that the moisture from the polylactic acid (PLA) filaments can be discovered the moisture by use 60 degree of temperature in 5 hours warm air-drying process.


Author(s):  
Jimmy Adjunta ◽  
Donald Houser

Abstract This paper is primarily concerned with the evaluation of the dimensional quality of spur gears produced by two casting processes, i. e., the investment casting and v-sand casting processes. The casting patterns used were designed by compensating for process shrinkage, and were manufactured using a flexible CNC gear machining process. A computer program, CASTGR, was written to facilitate the design phase of the patterns. The various gear configurations cast were inspected using an universal coordinate measuring machine. The geometry of the casting and pattern were correlated to verify the contraction characteristics of the gear castings. In an attempt to categorize the precision capabilities of the two casting processes, the spread of the deviations found for tooth thickness measurements and measurements along profiles and leads of the cast gears were examined. The observed effects of other process variables is also included.


Sign in / Sign up

Export Citation Format

Share Document