The Influence of the Suspension on the Phenomena of Wheel-Rail Contact

2015 ◽  
Vol 809-810 ◽  
pp. 1061-1066
Author(s):  
Ioan Sebeşan ◽  
Valeriu Ştefan

Efficient use of adhesion between wheels and rails involves a good knowledge of this phenomenon, in order to equip the vehicle with adequate facilities and systems that protect the vehicle and the rail. The loading of the vehicle's axle with dynamic loads in vertical and horizontal planes, are to be developed in the area of contact, both normal stress and shear distributed stress, their sum giving the friction force and the moment of pivoting friction (spin). This makes the wheel-rail contact problems take the two aspects of the study, namely the problem of normal and tangential contact issue. The normal contact problem involves regular geometric shape bodies, determining the size of the resulting contact surface, the distribution of the normal contact pressures and the relationship between the proximity of the bodies and the normal contact force. Solving the problem of the tangential wheel-rail contact is about to establish the correlation between the creepage, normal contact forces and friction forces, and also the ratio between the adherent contact surface and the nominal contact surface where the creepage ocurs.

2012 ◽  
Vol 586 ◽  
pp. 259-264 ◽  
Author(s):  
Mikhail Sverdlik ◽  
Alexander Pesin ◽  
D.O. Pustovoytov

The article focuses at technology development of the vertical asymmetric rolling and combined process of vertical asymmetric rolling and plastic bending. It has been shown that vertical asymmetric rolling peculiarity relates to the presence of a mixed zone, in which friction forces on contact roll surfaces are directed are differently. Experimental research showed serious drawbacks in the rolling technology caused by the growth of dynamic loads arising at the moment of plate contact with the bending roller. For solving the problem it was proposed to make the roller position motile to allow its movement along the required trajectory. The application of the motile roller helps to reduce dangerous torque differentiation at working rolls by the value of 1,5-2,5 compared with the rigidly fixed roller. The most effective bending roller trajectory is a second-order curve that is convex parabola.


Author(s):  
Yutaka Yamashita ◽  
Koki Shiohata ◽  
Takeshi Kudo

Friction damping devices such as under platform dampers are installed for modern turbine blades to suppress dynamic vibrations of the blades. In order to secure the reliability of the blades, it is important to predict the dynamic response and friction damping characteristics accurately. In this present paper, the dynamic response and friction damping characteristics of a last stage blade (LSB) of a steam turbine with contact surfaces at the cover, tie-boss and blade root was investigated. Especially, it is focused on the effect of the non-uniform normal contact forces at the contact surface. To investigate the effect of non-uniform normal contact forces, an analysis method was developed. Analysis model of the LSB with contact surfaces was discretized by finite elements. Tangential forces at the contact surfaces were modeled by multi-DOF macro-slip modeling. The non-linear frequency responses of the LSB were obtained by using the harmonic balance method. Using this analysis method, the relationship between the contact surface behavior and the dynamic response was studied.


2016 ◽  
Vol 22 (8) ◽  
pp. 1654-1687
Author(s):  
P Lidström

This paper is concerned with the kinematics of unilateral constraints in multibody dynamics. These constraints are related to the contact between parts and the principle of impenetrability of matter and have the property that they may be active, in which case they give rise to constraint forces, or passive, in which case they do not give rise to constraint forces. In order to check whether the constraint is active or passive a distance function between parts of the multibody is required. The paper gives a rigorous definition of the distance function and derives certain of its properties. The unilateral constraint may then be expressed in terms of this distance function. The paper analyses the transitions from passive constraints to active and vice versa. Sufficient regularity of the transplacements of the parts and their boundary surfaces will lead to specific properties of the time derivative of the distance function. When the unilateral constraint is active then the parts are geometrically in contact and there is a certain contact surface that, in specific cases, may degenerate into a point. If the parts are in mechanical contact over the contact surface then there will be an interaction between the parts given by contact forces, such as normal and friction forces. Parts in contact may be at rest relative to one another, over the contact surface, or they may be in relative sliding motion. The transition from non-sliding contact to sliding and from sliding to non-sliding is discussed and necessary conditions on the relative velocity and the traction vector are derived. Appropriate complementary conditions are then formulated. These are instrumental when the technique of linear complementarity is used in order to find solutions to the equations of motion.


2021 ◽  
Vol 11 (9) ◽  
pp. 4240
Author(s):  
Hao Gu ◽  
Kang Liu

Contact problems are widely encountered in geotechnical engineering, such as the contact between soils and concrete used in earth and rockfill dams, tunnels and coastal levees. Due to the unknown contact region and contact forces, the contact problems have strong boundary nonlinearity. In addition, soils have been recognized as heterogeneous materials in geotechnical engineering. The existence of the soil heterogeneity increases the nonlinearity of the contact problems. Currently, the contact problems are mostly analysed without considering the soil heterogeneity, which may not reflect the contact behavior well. In order to investigate the influence of soil heterogeneity on the contact problems, in this paper, a simple plane-strain contact problem is analysed as an example. In this example, Young’s modulus is taken to be a spatially variable. The local average subdivision (LAS) is used to model the heterogeneity of Young’s modulus. The penalty method is utilised to determine the contact behavior. By the first use of linking the penalty method with the LAS, the proposed approach can be used to analyse the contact problems considering soil heterogeneity. The results show that the influence of soil heterogeneity on the elastic contact problems is significant. The contact forces of the heterogeneous case present apparent variation compared to the results of the homogeneous case. The distribution of the contact force at a specific point is also normal when Young’s modulus is normally distributed, moreover, the coefficient of variation (COV) and the horizontal scale of fluctuation of Young’s modulus affect the extent of variation of the normal contact forces. The standard deviation of the normal contact force increases with the increase of the COV and decreases with the increase of the horizontal scale of fluctuation of Young’s modulus. From the analyses, to better predict the deformation/stress in the contact problems, heterogeneity needs to be considered.


2013 ◽  
Vol 29 (5) ◽  
pp. 517-524 ◽  
Author(s):  
Bhupinder Singh ◽  
Thomas D. Brown ◽  
John J. Callaghan ◽  
H. John Yack

During seated forward reaching tasks in obese individuals, excessive abdominal tissue can come into contact with the anterior thigh. This soft tissue apposition acts as a mechanical restriction, altering functional biomechanics at the hip, and causing difficulty in certain daily activities such as bending down, or picking up objects from the floor. The purpose of the study was to investigate the contact forces and associated moments exerted by the abdomen on the thigh during seated forward-reaching tasks in adult obese individuals. Ten healthy subjects (age 58.1 ± 4.4) with elevated BMI (39.04 ± 5.02) participated in the study. Contact pressures between the abdomen and thigh were measured using a Tekscan Conformat pressure-mapping sensor during forward-reaching tasks. Kinematic and force plate data were obtained using an infrared motion capture system. The mean abdomen-thigh contact force was 10.17 ± 5.18% of body weight, ranging from 57.8 N to 200 N. Net extensor moment at the hip decreased by mean 16.5 ± 6.44% after accounting for the moment generated by abdomen-thigh tissue contact. In obese individuals, abdomen-thigh contact decreases the net moment at the hip joint during seated forward-reaching activities. This phenomenon should be taken into consideration for accurate biomechanical modeling in these individuals.


Robotica ◽  
1993 ◽  
Vol 11 (2) ◽  
pp. 185-192 ◽  
Author(s):  
Y. L. Xiong ◽  
D. J. Sanger ◽  
D. R. Kerr

SUMMARYThis paper, as an extension of an earlier paper, presents a geometrical representation and theoretical foundation of robot grasping that is affected by friction and by the magnitudes of normal contact forces. Grasp analysis and synthesis are based on the concepts of constraint cone (region), restraint cone and freedom cone in the force screw-space and location screw-space. In fact, the freedom cone is the aggregate of all the screws repelling and reciprocal to the grasp geometry (denoted by the restraint cone). Moreover, the constraint cone and the constraint region describe the effect of friction and the influence of the amplitudes of normal forces. The conditions of equilibrium grasp, stable grasp, form closure, force closure, and relative form closure are derived from the geometrical representation, and approaches are suggested for the design of adaptable fixtures, and for automatic grasp planning. It is shown that relative form closure is of great significance for frictional grasp, since it is possible to generate enough internal forces in the subspace spanned by the contacts and consequently produce corresponding friction forces in the reciprocal subspace.


1997 ◽  
Vol 64 (1) ◽  
pp. 80-89 ◽  
Author(s):  
Maocheng Li ◽  
Desong Sha ◽  
K. K. Tamma

In the present study, an incremental variational inequality is described for frictional contact problems with material non linear behavior assumed to be elasto-plastic for the contacting bodies. On the contacting boundaries, the constraint conditions include noninterpenetration along the normal direction of the contact boundary and Coulomb friction law in the sliding direction. After numerical discretization using the finite element method, an effective linear complementary formulation is then established with two unknown variables and two complementary variables for each contact nodal pair. The proposed developments permit a reduced number of unknown variables which are chosen as the gap function for the normal direction and the norm of the incremental sliding displacements for the tangential direction; and the complementary variables are taken as the normal contact forces and slack variables in the tangential directions. The resulting linear complementary equations are then solved employing an explicit Conjugate Gradient Based Projection (CGBP) method in conjunction with a generalized Newton-Raphson iteration procedure to account for the material nonlinear behavior. The methodology is valid for three-dimensional frictional contact representations; however, for purposes of illustration of the proposed approaches, attention is confined to applications involving two-dimensional static elasto-plastic problems under small deformation. Numerical examples are presented which clearly show that the developments satisfy the problem physics and contact conditions with features to include high accuracy and reduced computational costs.


2021 ◽  
Vol 303 ◽  
pp. 01037
Author(s):  
Zhao Jinhai ◽  
Zhang Xinguo ◽  
Pan Haiyang ◽  
Chen Juntao

The structural planes existing in natural rock mass can control the failure process of rock mass. Based on the progressive response-stability failure process of a single fracture interface, the relationship between progressive response and material failure of composite rock mass is discussed. The method of friction contact plane analysis in PANDAS numerical analysis software is applied to explore the correlation between the movement and mechanical properties of composite rock mass under external forces. The motion index is mainly represented by the sliding speed and distance of the contact surface, while the mechanical properties are mainly explained by the normal contact force, the friction of the contact surface, the friction coefficient and the material damage. The relationship between these six variables illustrates the progressive response relationship during the movement of the composite rock mass. Based on the static and progressive characteristics of the progressive response process of deep rock mass engineering, the failure evolution law and energy dissipation law of composite rock mass loading process and the synergistic failure characteristics of composite rock mass are discussed. The scientific problems that need to be studied in the structure, deformation and failure of deep rock mass are put forward. The reference is provided for the failure law of fractured rock mass in water inrush process under the influence of mining, as well as fault plate material and the study of mechanical state of rock mass in fault fracture zone.


Author(s):  
Mate Antali ◽  
Gabor Stepan

AbstractIn this paper, the general kinematics and dynamics of a rigid body is analysed, which is in contact with two rigid surfaces in the presence of dry friction. Due to the rolling or slipping state at each contact point, four kinematic scenarios occur. In the two-point rolling case, the contact forces are undetermined; consequently, the condition of the static friction forces cannot be checked from the Coulomb model to decide whether two-point rolling is possible. However, this issue can be resolved within the scope of rigid body dynamics by analysing the nonsmooth vector field of the system at the possible transitions between slipping and rolling. Based on the concept of limit directions of codimension-2 discontinuities, a method is presented to determine the conditions when the two-point rolling is realizable without slipping.


2021 ◽  
Vol 11 (9) ◽  
pp. 4039
Author(s):  
Yiran Niu ◽  
Lin Li ◽  
Yanwei Zhang ◽  
Shicai Yu ◽  
Jian Zhou

Contact breakage of particles makes a large difference in the strength of coarse-grained soils, and exploring the characteristics within the process of the breakage is of great significance. Ignoring the influence of particle shape, the micromechanism of two spherical particles breaking under normal–tangential contact conditions was investigated theoretically and experimentally. Through theoretical analysis, the breakage form, the shape and size of the conical core, and the relationship between the normal and tangential forces at crushing were predicted. Particle contact tests of two gypsum spheres were carried out, in which the breakage forms, features of the conical cores and the normal and tangential forces at crushing were recorded for comparison with the predicted values. The test results and the theoretical predictions showed good agreement. Both the analysis and test demonstrate that the presence of tangential forces causes the conical core to assume the shape of an oblique cone, and the breakage form to change. Moreover, with increasing normal contact force, the tangential force needed for crushing increases gradually first and then decreases suddenly.


Sign in / Sign up

Export Citation Format

Share Document