Optimization of GMAW Parameters to Improve the Mechanical Properties

2015 ◽  
Vol 813-814 ◽  
pp. 456-461
Author(s):  
S. Saravanan ◽  
Pandian Pitchipoo

In this paper, multi objective optimization of Gas Metal Arc Welding GMAW) parameters are carried out to yield good mechanical strength in welded joints. Most of the failures are occurred on the welded elements due to the setting of improper welding parameters. The strength of welded joints in GMAW depends on several input process parameters such as welding current, welding voltage, gas flow rate, torch angle, welding speed, wire size and electrode feed rate. Wrong selection of these process parameters will lead to bad quality welds. So there is a need to control the process parameters to obtain good quality welded joints. For getting the better values of these parameters, it needs to conduct experiments by varying the input process parameters that are affecting the strength of the welded joints. In this work nine experimental runs based on an L9 orthogonal array of Taguchi method are performed to optimize the strength of the welded joint. To achieve this Grey Relational Analysis (GRA) is used. In this work Aluminum6063 material is used as base material.

Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 561
Author(s):  
Seong Min Hong ◽  
Shinichi Tashiro ◽  
Hee-Seon Bang ◽  
Manabu Tanaka

In joining aluminum alloy to galvanized (GI) steel, the huge gap of thermophysical properties, defects by zinc from the steel surface, and formation of excessive brittle Fe-Al intermetallics (IMC) are the main factors that deteriorate the joint quality. In this study, alternating current pulse gas metal arc welding (AC pulse GMAW) was suggested as a solution with a mix of electrode positive and negative modes. A 1.2 mm thick AA5052 aluminum alloy and GI steel plates were joined using 1.2 mm diameter AA4047 filler wire. A comparative study on the joint interface was conducted varying the welding current and electrode-negative (EN) ratio to investigate the effect of different welding parameters on the growth of the Fe-Al intermetallics (IMC) layer, the effect of zinc, and the mechanical characteristics of the joints. It was confirmed that the change of polarity affects the distribution of zinc element in the joints. An increase in the EN ratio suppressed the growth of the IMC layer to 3.59 μm with decreased heat input. The maximum tensile-shear strength of the welded joints was approximately 171 MPa (78% joint efficiency) at the welding current of 50 A with 20% EN ratio.


2018 ◽  
Vol 9 (1) ◽  
pp. 9-16
Author(s):  
S. A. Rizvi

This research article is focusing on the optimization of different welding process parameters which affect the weldability of stainless steel (AISI) 304H, Taguchi technique was used to optimize the welding parameters and the fracture mode characterization was studied. A number of experiments have been conducted. L9 orthogonal array (OA) (3×3) was applied. Analysis of variance ( ANOVA) and signal to noise ratio (SNR) was applied to determine the effect of different welding parameters such as welding current, wire feed speed and gas flow rate on mechanical, microstructure properties of SS304H. Ultimate tensile strength (UTS), toughness, microhardness (VHN), and mode of fracture was examined to determine weldability of AISI 304H and it was observed from results that welding voltage has major impact whereas gas flow rate has minor impact on ultimate tensile strength of the welded joints. Optimum process parameters were found to be 23 V, 350 IPM travel speed of wire and 15 l/min gas flow rate for tensile strength and mode of fracture was ductile fracture for tensile test specimen.


2011 ◽  
Vol 57 (Special Issue) ◽  
pp. S50-S56 ◽  
Author(s):  
P. Čičo ◽  
D. Kalincová ◽  
M. Kotus

This paper is focused on the analysis of the welding technology influence on the microstructure production and quality of the welded joint. Steel of class STN 41 1375 was selected for the experiment, the samples were welded by arc welding including two methods: a manual one by coated electrode and gas metal arc welding method. Macro and microstructural analyses of the experimental welded joints confirmed that the welding parameters affected the welded joint structure in terms of the grain size and character of the structural phase.


2017 ◽  
Vol 740 ◽  
pp. 155-160 ◽  
Author(s):  
Z.A. Zakaria ◽  
K.N.M. Hasan ◽  
M.F.A. Razak ◽  
Amirrudin Yaacob ◽  
A.R. Othman

In this study, the effects of various welding parameters on welding strength in low carbon steel JIS G 3101 SS400, welded by gas metal arc welding were investigated. Welding current, arc voltage and travel speed are the variable parameters were studied in this study. The ultimate tensile strength, hardness and heat affected zone were measured for each specimen after the welding operations, and the effects of these parameters on strength were examined. Then, the relationship between welding parameter and ultimate tensile strength, hardness and heat affected zone were determined. Based on the finding, the best parameter is formulated and used to calculate the heat input.


2013 ◽  
Vol 712-715 ◽  
pp. 623-626
Author(s):  
Dong Wang ◽  
Chang Shu He ◽  
Zhen Yu Qi ◽  
Hao Wang ◽  
Xiang Zhao ◽  
...  

3-mm thick Al-12.7Si-0.7Mg alloy plates were cut from the hot extrusion profiles. A butt-welding joint was made by gas metal arc welding (GMAW). The microstructures and mechanical properties of welded joint were studied by scanning electron microscope and tensile test methods. The results show that weld bead with good appearance and internal quality was obtained under the optimized welding parameters. The ultimate tensile strength for base material and welded joints of hot extrusion Al-12.7Si-0.7Mg alloy are much higher than that of 6063 alloy in T4 condition.


2010 ◽  
Vol 154-155 ◽  
pp. 873-876 ◽  
Author(s):  
Norinsan Kamil Othman ◽  
S.R.S. Bakar ◽  
Azman Jalar ◽  
Junaidi Syarif ◽  
M.Y. Ahmad

The purpose of this study is to evaluate the effect of filler metals in the gas metal arc welding (GMAW) process on the Aluminium alloy of AA 6061-T6 welded joints. 6 mm thickness plate with single V butt configuration was used and welded using two different fillers ER 4043 and ER 5356 and controlled welding parameters. The relationship between hardness and microstructure of the welded parts were studied and compared and the results showed that the post weld mechanical property has decreased especially for the filler ER 5356. The hardness at the heat affected zone (HAZ) of ER 5356 also has reduced almost 85% compared to the hardness of AA 6061 base metal. The microstructure of ER 4043 welding material shows the shape of columnar grains and dendrite structure. Microstructure morphology of ER 5356 welding material shows dendrites and intermetallic particles (Mg2Si) have partially dissolved and scattered in the welding material.


2011 ◽  
Vol 110-116 ◽  
pp. 2963-2968 ◽  
Author(s):  
Masood Aghakhani ◽  
Ehsan Mehrdad ◽  
Ehsan Hayati ◽  
Maziar Mahdipour Jalilian ◽  
Arash Karbasian

Gas metal arc welding is a fusion welding process which has got wide applications in industry. In order to obtain a good quality weld, it is therefore, necessary to control the input welding parameters. In other words proper selection of input welding parameters in this process contribute to weld productivity. One of the important welding output parameters in this process is weld dilution affecting the quality and productivity of weldment. In this research paper using Taguchi method of design of experiments a mathematical model was developed using parameters such as, wire feed rate (W), welding voltage (V), nozzle-to-plate distance (N), welding speed (S) and gas flow rate (G) on weld dilution. After collecting data, signal-to-noise ratios (S/N) were calculated and used in order to obtain the optimum levels for every input parameter. Subsequently, using analysis of variance the significant coefficients for each input factor on the weld dilution were determined and validated. Finally a mathematical model based on regression analysis for predicting the weld dilution was obtained. Results show that wire feed rate (W),arc voltage (V) have increasing effect while Nozzle-to-plate distance (N) and welding speed (S) have decreasing effect on the dilution whereas gas Flow rate alone has almost no effect on dilution but its interaction with other parameters makes it quite significant in increasing the weld dilution


2015 ◽  
Vol 812 ◽  
pp. 29-34 ◽  
Author(s):  
Ádám Dobosy ◽  
János Lukács

The objective of this article is to present the first results of our research work. In order to determination and comparison of the fatigue resistance, high cycle fatigue tests (HCF) were performed on RUUKKI OPTIM S690QL quenched and tempered high strength steel. In parallel these; welded joints were made on the same steel using gas metal arc welding (GMAW, MIG/MAG) to preparation of the cyclic investigations of the welded joints. In the article, the performance of the welding experiments will be presented; along with the results of the HCF tests executed on the base material and its welded joints. Furthermore, our results will be compared with different literary data.


Sign in / Sign up

Export Citation Format

Share Document