Finite Elements Modeling of Mechanical and Acoustic Properties of a Ceramic Metamaterial Assembled by Robocasting

2016 ◽  
Vol 821 ◽  
pp. 364-371 ◽  
Author(s):  
Alena Kruisová ◽  
Hanuš Seiner ◽  
Petr Sedlák ◽  
Michal Landa ◽  
Benito Román-Manso ◽  
...  

Finite element modeling (FEM) was used for numerical simulations of mechanical performance of aperiodic silicon-carbide scaffold manufactured by robocasting. The FEM approach enabled reliable calculation of theeffective anisotropic elastic properties of the scaffold at the macro-scale, as well as of the acoustic band structureindicating the metamaterial-like behavior of the material at the micro-scale. In addition, the micromechanics of thescaffold was discussed based on the outputs of the model: the mechanisms of the extremely soft shearing modes wereidentified and the corresponding stress concentrations arising at the contact points in the scaffold were analyzedwith respect to the possible failure modes of the robocast structure.

Author(s):  
Arz Y. Qwam Alden ◽  
Andrew G. Geeslin ◽  
Peter A. Gustafson

Background: Knot tying is considered a basic surgical skill, however, there is no consensus on the best technique. Suture breakage and slippage are failure modes during surgical repair and are related to stress concentrations which cannot be easily established with physical testing. Few computational models exist that describe the effect of knot topology on the failure mechanism. The purpose of this study was to implement the finite element method to analyze the mechanical behavior of surgical sutures according to number of throws and to validate the model against experiments. Methods: Experiments and models of monofilament and multifilament sutures were conducted. Multiple throw knots were tested to failure in a laboratory setting and with corresponding finite element models. Gross loads were compared when the knot reached a localized material yield stress in the model or when failure occurred in laboratory tests that have the same suture topology. Results: The results of laboratory tests and corresponding finite element models of single throw knots were compared and found to be well correlated and consistent with existing literature in strength prediction and failure location. Moreover, single throw knots have reduced failure strengths relative to non-knotted suture approximately by 120 N for both monofilament and multifilament sutures, respectively. Clinical Relevance: This paper describes a model which can describe the initial failure process leading to knot failure. In addition, the model can evaluate the effect of knot topology on the mechanics of surgical suture. Numerically, no assessment has been completed of knot security (i.e., how likely the knot is to untie), therefore, clinical recommendations are premature. In the future, the results may provide a framework for choosing the suture and knot types for soft tissue repairs.


2021 ◽  
Author(s):  
Huibin Xu ◽  
Wei Cong ◽  
Donghua Yang ◽  
Yanlong Ma ◽  
Wanliang Zhong ◽  
...  

Abstract The 5052 aluminium alloy and 304 stainless steel were successfully joined by cutting-assisted welding-brazing (CAWB) method without using flux. Dual-scale interfacial structures were achieved by manipulating the cutting tool profile. Results indicated that the macro-scale interfacial structure was produced at the joint interface when the taper step-shape cutting tool was adopted. As the cutting tool step was increased to 6-step, the micro-scale interface took on serrated morphology and a layer of continuous and wavy intermetallic compound (IMC) with an average thickness of 3.3 μm was formed at the interface. The τ 4 IMC particles and the FeAl 6 phases on a small scale were dispersed homogeneously in the welded seam. The maximum tensile strength of the joints reached 152.3 MPa upon tensile loading, 75% that of the 5052 aluminium base metal. The strong and reliable Al/steel dissimilar joints were attributed to the particle reinforced weld metal and the macro- and micro-scale dual self-locking structure at the interface.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1021
Author(s):  
Yunzhao Li ◽  
Huaping Tang ◽  
Ruilin Lai

Resistance spot welded 1.2 mm (t)-thick 1400 MPa martensitic steel (MS1400) samples are fabricated and their microstructure, mechanical properties are investigated thoroughly. The mechanical performance and failure modes exhibit a strong dependence on weld-nugget size. The pull-out failure mode for MS1400 steel resistance spot welds does not follow the conventional weld-nugget size recommendation criteria of 4t0.5. Significant softening was observed due to dual phase microstructure of ferrite and martensite in the inter-critical heat affected zone (HAZ) and tempered martensite (TM) structure in sub-critical HAZ. However, the upper-critical HAZ exhibits obvious higher hardness than the nugget zone (NZ). In addition, the mechanical properties show that the cross-tension strength (CTS) is about one quarter of the tension-shear strength (TSS) of MS1400 weld joints, whilst the absorbed energy of cross-tension and tension-shear are almost identical.


Author(s):  
Feng Li ◽  
Gulnigar Ablat ◽  
Siqi Zhou ◽  
Yixin Liu ◽  
Yufeng Bi ◽  
...  

AbstractIn ice and snow weather, the surface texture characteristics of asphalt pavement change, which will significantly affect the skid resistance performance of asphalt pavement. In this study, five asphalt mixture types of AC-5, AC-13, AC-16, SMA-13, SMA-16 were prepared under three conditions of the original state, ice and snow. In this paper, a 2D-wavelet transform approach is proposed to characterize the micro and macro texture of pavement. The Normalized Energy (NE) is proposed to describe the pavement texture quantitatively. Compared with the mean texture depth (MTD), NE has the advantages of full coverage, full automation and wide analytical scale. The results show that snow increases the micro-scale texture because of its fluffiness, while the formation of the ice sheets on the surface reduces the micro-scale texture. The filling effect of snow and ice reduces the macro-scale texture of the pavement surface. In a follow-up study, the 2D-wavelet transform approach can be applied to improve the intelligent driving braking system, which can provide pavement texture information for the safe braking strategy of driverless vehicles.


2006 ◽  
Vol 12 (4) ◽  
pp. 461-485 ◽  
Author(s):  
Keisuke Suzuki ◽  
Takashi Ikegami

We study a system of self-replicating loops in which interaction rules between individuals allow competition that leads to the formation of a hypercycle-like network. The main feature of the model is the multiple layers of interaction between loops, which lead to both global spatial patterns and local replication. The network of loops manifests itself as a spiral structure from which new kinds of self-replicating loops emerge at the boundaries between different species. In these regions, larger and more complex self-replicating loops live for longer periods of time, managing to self-replicate in spite of their slower replication. Of particular interest is how micro-scale interactions between replicators lead to macro-scale spatial pattern formation, and how these macro-scale patterns in turn perturb the micro-scale replication dynamics.


2021 ◽  
Vol 5 (1) ◽  
pp. 32
Author(s):  
Roya Akrami ◽  
Shahwaiz Anjum ◽  
Sakineh Fotouhi ◽  
Joel Boaretto ◽  
Felipe Vannucchi de Camargo ◽  
...  

Joints and interfaces are one of the key aspects of the design and production of composite structures. This paper investigates the effect of adhesive–adherend interface morphology on the mechanical behavior of wavy-lap joints with the aim to improve the mechanical performance. Intentional deviation from a flat joint plane was introduced in different bond angles (0°, 60°, 90° and 120°) and the joints were subjected to a quasi-static tensile load. Comparisons were made regarding the mechanical behavior of the conventional flat joint and the wavy joints. The visible failure modes that occurred within each of the joint configurations was also highlighted and explained. Load vs. displacement graphs were produced and compared, as well as the failure modes discussed both visually and qualitatively. It was observed that distinct interface morphologies result in variation in the load–displacement curve and damage types. The wavy-lap joints experience a considerably higher displacement due to the additional bending in the joint area, and the initial damage starts occurring at a higher displacement. However, the load level had its maximum value for the single-lap joints. Our findings provide insight for the development of different interface morphology angle variation to optimize the joints behavior, which is widely observed in some biological systems to improve their performance.


2018 ◽  
Vol 115 (4) ◽  
pp. 413
Author(s):  
Nida Naveed

This study, on a micro-scale, of the WEDM cut surfaces of specimens to which the contour method of residual stress measurement is being applied provides detailed information about the effects of the cutting process on the surface quality. This is defined by a combination of several parameters: variation in surface contour profile, sub-surface damage and surface texture. Measurements were taken at the start, the middle and at the end of the cut. This study shows that during WEDM cutting, a thin layer, extending to a depth of a few micrometres below the surface of the cut, is transformed. This layer is known as the recast layer. Using controlled-depth etching and X-ray diffraction, it is shown that this induces an additional tensile residual stress, parallel to the plane of the cut surface. The WEDM cut surface and sub-surface characteristics are also shown to vary along the length of the cut. Moreover, these micro-scale changes were compared with macro-scale residual stress results and provides an indication of the point at which the changes occurred by cutting process can be significantly relative to the macro-scale residual stress in a specimen.


Lubricants ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 78 ◽  
Author(s):  
Gregory de Boer ◽  
Andreas Almqvist

A two-scale method for modelling the Elastohydrodynamic Lubrication (EHL) of tilted-pad bearings is derived and a range of solutions are presented. The method is developed from previous publications and is based on the Heterogeneous Multiscale Methods (HMM). It facilitates, by means of homogenization, incorporating the effects of surface topography in the analysis of tilted-pad bearings. New to this article is the investigation of three-dimensional bearings, including the effects of both ideal and real surface topographies, micro-cavitation, and the metamodeling procedure used in coupling the problem scales. Solutions for smooth bearing surfaces, and under pure hydrodynamic operating conditions, obtained with the present two-scale EHL model, demonstrate equivalence to those obtained from well-established homogenization methods. Solutions obtained for elastohydrodynamic operating conditions, show a dependency of the solution to the pad thickness and load capacity of the bearing. More precisely, the response for the real surface topography was found to be stiffer in comparison to the ideal. Micro-scale results demonstrate periodicity of the flow and surface topography and this is consistent with the requirements of the HMM. The means of selecting micro-scale simulations based on intermediate macro-scale solutions, in the metamodeling approach, was developed for larger dimensionality and subsequent calibration. An analysis of the present metamodeling approach indicates improved performance in comparison to previous studies.


Author(s):  
Martin R. Bache ◽  
J. Paul Jones ◽  
Zak Quiney ◽  
Louise Gale

Sophisticated mechanical characterisation is vital in support of a fundamental understanding of deformation in ceramic matrix composites. On the component scale, “damage tolerant” design and lifing philosophies depend upon laboratory assessments of macro-scale specimens, incorporating typical fibre architectures and matrix under representative stress-strain states. Standard SiCf/SiC processing techniques inherently introduce porosity between the individual reinforcing fibres and between woven fibre bundles. Subsequent mechanical loading (static or cyclic) may initiate cracking from these stress concentrations in addition to fibre/matrix decohesion and delamination. The localised coalescence of such damage ultimately leads to rapid failure. Proven techniques for the monitoring of damage in structural metallics, i.e. optical microscopy, potential drop systems, acoustic emission (AE) and digital image correlation (DIC), have been adapted for the characterisation of CMC’s tested at room temperature. As processed SiCf/SiC panels were subjected to detailed X-ray computed tomography (XCT) inspection prior to specimen extraction and subsequent static and cyclic mechanical testing to verify their condition. DIC strain measurements, acoustic emission and resistance monitoring were performed and correlated to monitor the onset of damage during loading, followed by intermittent XCT inspections throughout the course of selected tests.


Sign in / Sign up

Export Citation Format

Share Document