Design of Water Resources Optimal Allocation Model of Sustainable Development

2014 ◽  
Vol 1010-1012 ◽  
pp. 1089-1094
Author(s):  
Chang Hu ◽  
Dang Sheng Li

According to the relationship between the sustainable development and the optimal allocation of water resources, the evaluation system based on the sustainable development of optimal allocation of water resources is established in respect of the index system water resources carrying capacity, the social economic and ecological environment. Henan is taken as an example to evaluate the sustainable degree with actual index value from the regional water resources supply and demand balance of simulation results. Its results have a guiding significance for the water resources planning, management and sustainable utilization.

PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254547
Author(s):  
Yang Li ◽  
Jiancang Xie ◽  
Rengui Jiang ◽  
Dongfei Yan

The purposes are to use water resources efficiently and ensure the sustainable development of social water resources. The edge computing technology and GIS (Geographic Information Science) image data are combined from the perspective of sustainable development. A prediction model for the water resources in the irrigation area is constructed. With the goal of maximizing comprehensive benefits, the optimal allocation of water quality and quantity of water resources is determined. Finally, the actual effect of the model is verified through specific instance data in a province. Results demonstrate that the proposed irrigation area ecological prediction model based on edge computing and GIS images can provide better performance than other state of the art models on water resources prediction. Specifically, the accuracy can remain above 90%. The proposed model for ecological water demand prediction in the irrigation area and optimal allocation of water resources is based on the principle of quality water supply. The optimal allocation of water resources reveals the sustainable development ideas and the requirements of the optimal allocation model, which is very reasonable. The improvement of the system is effective and feasible, and the optimal allocation results are reasonable. This allocation model aims at the water quality and quantity conditions, water conservancy project conditions, and specific water demand requirements in the study area. The calculation results have great practicability and a strong guiding significance for the sustainable utilization and management of the irrigation area.


2012 ◽  
Vol 518-523 ◽  
pp. 4165-4170
Author(s):  
Xiao Yu Song ◽  
Huai You Li ◽  
Wen Juan Shi

In this paper, based on the fact of water resources shortage, environmental degradation in Chanba River basin, using multi-objective optimization theory, we established the ecology-oriented water resources optimal allocation model and achieved the coupling between water quantity and quality. According to supply and demand of water resources in two levels of years (2020, 2030) and the guaranteed rate 75%, developed model parameters (coefficients), called the optimization function to solve it. The model is applied to Chanba River basin, indicating that the model is reasonable, efficient algorithms The optimal allocation model and the results reflect the concept of sustainable development for ecological, economic efficiency and help to improve water supply reliability, the sustainable use of water resources planning and management provides a basis for decision making.


2017 ◽  
Vol 17 (5) ◽  
pp. 1306-1315
Author(s):  
Hongbo Liu ◽  
Yunfeng Liu ◽  
Lingjun Li ◽  
Hongxia Gao

It is of great significance to establish a scientific and reasonable water resources carrying capacity evaluation system and evaluation method on the basis of studying the interdependence and mutual relations of water resources, society, economy and the ecological environment. This can guide water resources utilization and economic and social development planning, and promote the sustainable development of water resources and the socio-economic system. Projection pursuit technology can achieve automatic index selection and index weight confirmation. When used to assess water resources carrying capacity, the subjectivity and uncertainty of index weights can be avoided. Meanwhile, it can also be used to optimize the index system, and can improve the accuracy of evaluation results and discrimination. In this paper, the projection pursuit grade model of water resources carrying capacity is established. The evaluation criteria are determined by combining the theory with practice. Grades I to IV indicate that the water resources capacity declines gradually. This is the first study of water resources carrying capacity in four municipalities in China. The results show that the water resources carrying capacity of the four municipalities in 2012 belong to the third level, Chongqing is close to the second level and Tianjin is close to the fourth level.


Author(s):  
Hang Li ◽  
Xiao-Ning Qu ◽  
Jie Tao ◽  
Chang-Hong Hu ◽  
Qi-Ting Zuo

Abstract China is actively exploring water resources management considering ecological priorities. The Shaying River Basin (Henan Section) serves as an important grain production base in China. However, conflicts for water between humans and the environment are becoming increasingly prominent. The present study analyzed the optimal allocation of water while considering ecological priorities in the Shaying River Basin (Henan Section). The ecological water demand was calculated by the Tennant and the representative station methods; then, based on the predicted water supply and demand in 2030, an optimal allocation model was established, giving priority to meeting ecological objectives while including social and comprehensive economic benefit objectives. After solving the model, the optimal results of three established schemes were obtained. This revealed that scheme 1 and scheme 2 failed to satisfy the water demand of the study area in 2030 by only the current conditions and strengthening water conservation, respectively. Scheme 3 was the best scheme, which could balance the water supply and demand by adding new water supply based on strengthening water conservation and maximizing the benefits. Therefore, the actual water allocation in 2030 is forecast to be 7.514 billion (7.514 × 109) m3. This study could help basin water management departments deal with water use and supply.


2018 ◽  
Vol 10 (11) ◽  
pp. 3996
Author(s):  
Xuedong Liang ◽  
Ruyun Zhang ◽  
Canmian Liu ◽  
Haiyue Liu

In an attempt to ensure sustainable water resource development, this paper constructs a comprehensive scientific index evaluation system focused on the macro socio-economic-ecological environment. Inspired by the theory of dissipative structure, the sustainable development system of water resources is regarded as a complex and huge dissipative system. In order to effectively measure the coordinated development status and orderly evolution trend of the system, this paper uses the information entropy method to construct the measurement model of the water resources system and analyze its internal entropy flow changes. The empirical analysis of the water resources in China from 2007 to 2016 found that coordinated water resource subsystem development could achieve sustainable development, and that over the examined period, the sustainable water resource development system in China became more orderly and coordinated; therefore, the sustainable development aim is gradually being achieved.


2018 ◽  
Vol 19 (4) ◽  
pp. 1044-1054 ◽  
Author(s):  
Baohui Men ◽  
Zhijian Wu ◽  
Huanlong Liu ◽  
Zehua Hu ◽  
Yangsong Li

Abstract Water shortages and the deterioration of water quality in the natural environment have a negative effect on social development of many countries. Therefore, optimizing the allocation of water resources has become an important research topic in water resources planning and management. An essential step in improving the utilization efficiency of water resources is the prediction of water supply and demand. Because it has a great number of merits, the grey prediction method has been widely used in population prediction and temperature prediction. However, it also has limitations such as low prediction precision since original data seriously fluctuates. This paper aims to handle the sample values by an innovative method utilizing moving-average technique (MA) model and optimizing the background values to make them more typical. Results proved that the prediction accuracy of the traditional model was effectively improved by the proposed method. The proposed model was then applied in the multi-objective planning to establish an optimal water resources allocation model for Beijing in the short-term (2020) planning timeframe, including local water resources, transfer water volumes, and other water supplies. The results indicated that industrial and agricultural water use could be well met, while domestic and environmental water resources may face a shortage.


2014 ◽  
Vol 675-677 ◽  
pp. 787-793
Author(s):  
Yan Li Wang ◽  
Rui Ping Zhou ◽  
Min Zhang ◽  
Min Ning Zhao

In the construction plan of the Xi'an-Xianyang Integration, water resources carrying capacity (WRBC) plays an important role in construction planning. Establish a comprehensive evaluation model of water resources carrying capacity in Xianyang City. 10 indexes of 5 categories, which were selected the analysis of relevant indexes including socio-economic indexes, water supply and demand indicators and water quality indicators, etc., were used to composing evaluation system. Using Cluster Analysis, Analytic Hierarchy Process (AHP) and Fuzzy Matrix. The sum of insecurity and less security coefficient of Xianyang City Water Resources Carrying Capacity is at about 0.7. The sum of more security and security coefficient is at about 0.3. And the safety coefficient of Water Resources Carrying Capacity in Xianyang City shows increasing trend. In Xi'an-Xianyang integration, through economic development, focusing on the construction of water and water pollution control, water resources carrying capacity is expected to increase in Xianyang City.


2014 ◽  
Vol 937 ◽  
pp. 559-564
Author(s):  
Tai Zhong Gao ◽  
Can Can Zhang ◽  
Hui Cong Pang

Water resource is irreplaceable as one kind of important natural resources and strategic economic resources. Water resources optimal allocation is an important means to solve the problem of water resources to keep the relative balance of the supply and demand. For ensuring the sustainable development, according to the South-to-North Water Transfer Project, and aiming at the maximum synthesized benefits, the model for water resources optimal allocation was established. A lot of factors were considered. The cause function, restriction and parameters were discussed. At last, optimal allocation of water resources in the middle line of Project in Hebei Province was studied under the guarantee of 95 % in 2010 and 2014. The results showed that the Project can solve the serious water shortage in Hebei province, North China.


Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2587
Author(s):  
Fan Wu ◽  
Zhicheng Zhuang ◽  
Hsin-Lung Liu ◽  
Yan-Chyuan Shiau

With the rapid development of urbanization, problems such as the tight supply and demand of water resources and the pollution of the water environment have become increasingly prominent, and the pressure on the carrying capacity of water resources has gradually increased. In order to better promote the sustainable development of cities, it is extremely important to coordinate the relationship between water resources and economic society. This study analyzed the current research status of water resources carrying capacity from two aspects, i.e., research perspective and research methodology, established an innovative evaluation system, and used the principal component analysis to analyze the water resources carrying capacity in Huai’an City, an important city in China’s Huaihe River Ecological Economic Zone. Based on the results, it is found that the water resources carrying capacity of Huai’an City has been declining year by year from 2013 to 2019. Based on the evaluation results, suggestions and measures to improve the water resources carrying capacity of the empirical city are proposed to provide an important decision basis for the coordinated development of urban economy, society, and water resources.


2012 ◽  
Vol 446-449 ◽  
pp. 2703-2707 ◽  
Author(s):  
Wen Sun ◽  
Zhao Jing Zeng

The water resources is a complex coupling system,combined with the human social development and living environment. Water resources optimal allocation plays an important role in supporting the whole sustainable development of national economy in Weinan city as the solution about the shortage of urban water resources .In this paper, we take the urban water supply and the water resources system in Weinan city as the research object, through the analysis of the actual data, analyzing the elements and relationships between systems of urban water supply in Weinan city and the characteristics of the water resources project, adopting optimization theory of dynamic programming principle to build the Weinan city water resources optimization allocation model, and puts forward the method of benefit function to obtain the strategy plan for optimal allocation of water resources in the city.


Sign in / Sign up

Export Citation Format

Share Document