The Study of the CBN Grain Shape on its Microcutting Performance Based on Finite Element Method

2014 ◽  
Vol 1027 ◽  
pp. 340-343
Author(s):  
Geng Zhi ◽  
Wei Yao Bi ◽  
Jia Jun Tang ◽  
Xue Kun Li ◽  
Yi Ming Rong

Given that the grain geometry has an important impact on grinding process, it’s necessary to investigate the influence of grain shapes on grinding mechanism. In this paper, a 3D FEM model is developed to study the effects of CBN grain geometry on its microcutting performance under various speed levels, which is effective to understand the microcutting process qualitatively and quantitatively. The simulation results indicate that the single grain microcutting force ratio and material removal ratio are both sensitive to the grain shape and those grains with truncated tetrahedron shape of large cross-sectional area and negative rake angle would improve the cutting performance.

2012 ◽  
Vol 510 ◽  
pp. 395-400
Author(s):  
Hong Xia Zhang ◽  
Wu Yi Chen

Grinding of metals is a complex material removal operation. Research on cutting process of a single abrasive grain is the basis of further understanding of grinding mechanism. In this investigation, the simulation and analysis for the non-uniform thermo-mechanical coupling intense stress fields in cutting zones of a single abrasive with negative rake are conducted by means of the FEM techniques. The cutting forces, the cutting temperature distribution and the strain rate in cutting zone are numerically demonstrated. Grinding mechanics are analyzed from microscopic view according to the simulation results. Research results facilitate a better understanding on the mechanics of grinding.


2009 ◽  
Vol 626-627 ◽  
pp. 75-80 ◽  
Author(s):  
Jian Qiu ◽  
Ya Dong Gong ◽  
Yue Ming Liu ◽  
J. Cheng

Separating the workpiece velocity on the plane of grinding wheel, it is helpful to analyze Quick-point grinding mechanism. There are some relations among wheel’s deflective angle, workpiece feed velocity and tangential velocity. In this research, the resultant workpiece speed, grinding contact zone and material removal mode is analyzed. And a model is established which is helpful to analyze the tendency of component grinding forces and force ratio. It is found the grinding force is influenced by the factors such as cutting depth, wheel velocity, grinding angle as well as equivalent diameter, respectively. Finally, a theoretical basis for actual processing is provided.


Author(s):  
Fabiano Bini ◽  
Andrada Pica ◽  
Simone Novelli ◽  
Raffaella Pecci ◽  
Rossella Bedini ◽  
...  

2011 ◽  
Vol 487 ◽  
pp. 39-43 ◽  
Author(s):  
L. Tian ◽  
Yu Can Fu ◽  
W.F. Ding ◽  
Jiu Hua Xu ◽  
H.H. Su

Single-grain grinding test plays an important part in studying the high speed grinding mechanism of materials. In this paper, a new method and experiment system for high speed grinding test with single CBN grain are presented. In order to study the high speed grinding mechanism of TC4 alloy, the chips and grooves were obtained under different wheel speed and corresponding maximum undeformed chip thickness. Results showed that the effects of wheel speed and chip thickness on chip formation become obvious. The chips were characterized by crack and segment band feature like the cutting segmented chips of titanium alloy Ti6Al4V.


2011 ◽  
Vol 223 ◽  
pp. 535-544 ◽  
Author(s):  
Volker Schulze ◽  
Frederik Zanger

Titanium alloys like Ti‑6Al‑4V have a low density, a very high strength and are highly resistant to corrosion. However, the positive qualities in combination with the low heat conductivity have disadvantageous effects on mechanical machining and on cutting in particular. Ti‑6Al‑4V forms segmented chips for the whole range of cutting velocities which influences tool wear. Thus, optimization of the manufacturing process is difficult. To obtain this goal the chip segmentation process and the tool wear are studied numerically in this article. Therefore, a FEM model was developed which calculates the wear rates depending on state variables from the cutting simulation, using an empirical tool wear model. The segmentation leads to mechanical and thermal load variations, which are taken into consideration during the tool wear simulations. In order to evaluate the simulation results, they are compared with experimentally obtained results for different process parameters.


2016 ◽  
Vol 6 (1) ◽  
pp. 7-15
Author(s):  
Daniela Mihaela Boca ◽  
A. Faur ◽  
A. Boca

Abstract This study aims to presents the importance of end constrains, boundary conditions and position of the applied forces regarding the design of precast/prestressed concrete box girders. The study is based on a destructive test which was performed on a 37.1 m span single-cell prestressed concrete box girder. The scope of the test was to certify the usage of such girders for the new Transylvania motorway bridges. The test is numerically reproduced through a full 3D FEM model implemented in SAP2000. The influence of the end diaphragms is considered by analysing the beam’s behaviour to six loading conditions: one of which is replicating the loadings during the test, while the others are conceived as real vertical and horizontally loading scenarios. The results obtained for the girders with and without end constrains are compared. The performances of both design solutions in the presence of prestressing are highlighted where applicable. It is considered that the results of this study may provide very important data if considering that Romania has an urgent need to realize a modern and an adequate transport infrastructure.


2012 ◽  
Vol 226-228 ◽  
pp. 13-16
Author(s):  
Xin Wang ◽  
Shao Ze Luo

In order to study the flow-induced vibration of the spillway tunnel working gate of one reservoir, hydraulic model test with scale 1:20 was conducted to obtain the dynamic pressure characteristics on the working gate. Experiment modal analysis method was employed to identify the structure dynamic characteristics through the 1:10 working gate mode test. The 3D FEM model of the gate was built to simulate the vibration response of the structure. The research showed the low order modal frequencies of the working gate were not fully breaking away from the high energy zone of the dynamic water, which would induce severe vibration. The vibration response of the gate became the biggest when it was operating at 0.5 partial opening.


Sign in / Sign up

Export Citation Format

Share Document