Possible Solutions for Ground Slabs of Energy Efficient Buildings

2014 ◽  
Vol 1041 ◽  
pp. 105-108
Author(s):  
Anna Sedláková ◽  
Pavol Majdlen ◽  
Ladislav Ťažký

The building envelope is a barrier that separates the internal environment from the effects of weather. This barrier ought to facilitate the optimal comfort of the interior environment in winter as well as summer. It has been shown in practice that most building defects occur within the building envelope. This includes external walls, roofs and floors too, and is impartial to new or renovated buildings. Heat losses of buildings through external constructions – roof, external walls, ground slabs are not negligible. It is therefore important to pay more attention to these construction elements. Basementless buildings situated on the ground are in direct contact with the subgrade and its thermal state. An amount of heat primarily destined for the creation of thermal comfort in the interior escapes from the baseplate to the cooler subgrade. The outgoing heat represents heat losses, which unfavourably affect the overall energy efficiency of the building. The heat losses represent approximately 15 to 20 % of the overall heat losses of the building. This number is a clear antecedent for the need to isolate and minimalize heat flow from the building to the subgrade.

Author(s):  
Viacheslav Martynov

To calculate the optimal parameters of outbuildings, a mathematical model and method for optimizing the shape and resistance of heat transfer for opaque and transparent structures with a certain constant number of faces, building volume and amount of insulation to minimize the thermal balance of enclosing structures with the environment during the heating period In the course of calculations the geometrical parameters of translucent, opaque structures in the heat-insulating shell of buildings are determined taking into account heat losses, heat influx from solar radiation by the criterion of ensuring minimum heat losses through enclosing structures, rational parameters (buildings) The given technique and mathematical models should be used in the future in the design of energy efficient buildings in the reconstruction and thermal modernization of buildings. This will increase their energy efficiency and, accordingly, the energy efficiency class of buildings. For the research faceted attached building in the form of a triangular pyramid, the reduction in heat loss was 14.82 percent only due to the optimization of the shape and redistribution of the insulation. Similar results were obtained for other initial forms. For the first time, a computerized method was proposed, an algorithm and application package Optimparam for multiparameter shape optimization and insulation of translucent and opaque structures for outbuildings with a given number of arbitrarily arranged faces were developed.


2020 ◽  
Vol 13 (2) ◽  
pp. 47-56
Author(s):  
I. V. Yarmoshenko ◽  
A. D. Onishchenko ◽  
G. P. Malinovsky ◽  
A. V. Vasilyev ◽  
E. I. Nazarov ◽  
...  

A comparative analysis of the radon concentrations in modern multi-storey residential buildings of high energy efficiency class and buildings typical for urban areas of the twentieth century was carried out. The study was conducted in Russian cities located in various climatic zones – Ekaterinburg, Krasnodar, St. Petersburg, Salekhard, Chelyabinsk. The radon concentration in samples of buildings was measured using integrated radon radiometers based on nuclear track detectors according to a single method. The surveyed sample included 498 apartments in multi-apartment buildings. Among all the examined building types, the highest average radon concentration is observed in modern energy-efficient houses – 43 Bq/m3. In other types of buildings, the following average radon concentrations were obtained: brick 2–5 floors – 35 Bq/m3; panel 5 floors – 32 Bq/m3; panel 7–12 floors 1970-1990 years of construction – 22 Bq/m3; brick> 5 floors 1970–1980 years of construction – 20 Bq m3; panel, built since 1990 – 24 Bq/m3. The results of the study confirm the assumption that radon concentration in modern multi-storey energy-efficient houses is on average higher than in typical residential buildings of the Soviet period. The increased accumulation of radon in energy-efficient buildings is associated with a decrease in the building envelope permeability and the contribution of fresh air to the general air exchange. Despite the fact that there were no cases of exceeding hygienic standards for the indoor radon concentration in the framework of this study, the higher radon concentration in buildings of increased energy efficiency requires attention from the point of view of implementing the principle of optimization of radiation protection. In the future, extensive construction of energy-efficient buildings may increase the average and collective doses to the urban population in the Russian Federation.


The article describes main points and characteristics of the building envelope design considering life-cycle cost and compliance with the codes for energy efficiency parameters in Ukraine. This article contains of the problem analysis of the requirements development for the energy-efficient buildings parameters in Ukraine considering life-cycle cost in the walling design. The structural concepts for the thermal insulation of building exterior walls and roof coatings and their impact on energy efficiency are considered. Designing rational structural concepts for thermal insulating envelope of energy-efficient buildings. The role of the life cycle cost criterion in making decisions on the choice of building envelope is clarified. Analysis of activities, publications and regulatory documents in Ukraine and the EU-countries for the design of rational thermal insulating building envelope considering life-cycle cost to reducing energy consumption. The requirements of regulatory documents on the design of energy-efficient buildings in Ukraine are systematized. The variants of construction solutions for building envelope are considered in terms of the life-cycle cost and energy saving requirements. The tasks of choosing optimal solutions for enclosing structures of external walls and building coatings are multicriteria of a cardinal choice of alternatives with different important measures from a finite set of feasible solutions when considering a weakly structured problem with clearly defined separated parameters. Thermal insulating building envelope using modern insulation systems should be used in all types of buildings.


2018 ◽  
Vol 33 ◽  
pp. 02005 ◽  
Author(s):  
Sergey Korniyenko

Energy conservation and human thermal comfort enhancement in buildings is a topical issue of modern architecture and construction. The innovative solution of this problem makes it possible to enhance building ecological and maintenance safety, to reduce hydrocarbon fuel consumption, and to improve life standard of people. The requirements to increase of energy efficiency in buildings should be provided at all the stages of building's life cycle that is at the stage of design, construction and maintenance of buildings. The research purpose is complex analysis of energy efficiency in operated high-rise residential building. Many actions for building energy efficiency are realized according to the project; mainly it is the effective building envelope and engineering systems. Based on results of measurements the energy indicators of the building during annual period have been calculated. The main reason of increase in heat losses consists in the raised infiltration of external air in the building through a building envelope owing to the increased air permeability of windows and balcony doors (construction defects). Thermorenovation of the building based on ventilating and infiltration heat losses reduction through a building envelope allows reducing annual energy consumption. Energy efficiency assessment based on the total annual energy consumption of building, including energy indices for heating and a ventilation, hot water supply and electricity supply, in comparison with heating is more complete. The account of various components in building energy balance completely corresponds to modern direction of researches on energy conservation and thermal comfort enhancement in buildings.


Buildings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 491
Author(s):  
Jorge González ◽  
Carlos Alberto Pereira Soares ◽  
Mohammad Najjar ◽  
Assed N. Haddad

Linking Building Information Modelling and Building Energy Modelling methodologies appear as a tool for the energy performance analysis of a dwelling, being able to build the physical model via Autodesk Revit and simulating the energy modeling with its complement Autodesk Insight. A residential two-story house was evaluated in five different locations within distinct climatic zones to reduce its electricity demand. Experimental Design is used as a methodological tool to define the possible arrangement of results emitted via Autodesk Insight that exhibits the minor electric demand, considering three variables: Lighting efficiency, Plug-Load Efficiency, and HVAC systems. The analysis concluded that while the higher the efficiency of lighting and applications, the lower the electric demand. In addition, the type of climate and thermal characteristics of the materials that conform to the building envelope have significant effects on the energetic performance. The adjustment of different energetic measures and its comparison with other climatic zones enable decision-makers to choose the best combination of variables for developing strategies to lower the electric demand towards energy-efficient buildings.


2014 ◽  
Vol 899 ◽  
pp. 120-125
Author(s):  
Bernhard Sommer ◽  
Ulrich Pont

In this paper, the authors want to show a method that allows customizing energy efficient buildings to the very task and to the very site by linking environmental data and design strategies through algorithmic processes. An optimum solution for the energy efficiency of a building can then be found by running an evolutionary solver.


2011 ◽  
Vol 224 ◽  
pp. 104-108
Author(s):  
Ya Guang Sun

Current social development is pressing for energy efficient buildings. The trend of consistent updating of energy-efficient building technology reflects the importance and urgency of energy efficiency in buildings. Through analysis on the current situation of building development, it can be obtained that the energy efficient buildings as well as utilization of renewable energy sources in buildings will be bound to be one of main topics for discussion in future building design.


2014 ◽  
Vol 223 ◽  
pp. 308-315 ◽  
Author(s):  
Stanisław Kozioł ◽  
Andrzej Zbrowski

The system developed at the Institute for Sustainable Technologies – National Research Institute is intended for heat recuperation efficiency tests for recuperators used in ventilation systems in modern, passive buildings. It allows a complex and precise assessment of the efficiency of recuperators, directly influencing the cost of energy used to provide thermal comfort inside a building.


2013 ◽  
Vol 649 ◽  
pp. 125-128 ◽  
Author(s):  
Barbora Hrubá ◽  
Marcela Černíková ◽  
Lucie Kucerova ◽  
Lubomír Martiník

The value of air permeability, or the value of n50 provides important information about the impermeability of the building envelope and thus the quality of internal environment of the building. It is also one of the main evaluation criteria in classifying energy efficient buildings. Air permeability is determined by Blower Door Test where the fan blows air in or out from the measured area. The measurement is performed in a overpressure and afterwards in a underpressure during which the leaks are detected. The frame is usually placed into the front door which themselves is a weak part in the building envelope, and thus the rate of leakage completely denies. The effect of leakage of the front door is so significant that it can often cause a misclassification of the energy efficient buildings. We have tested this hypothesis by Blower Door Test on a passive timber construction build in 2007 during which we have measured the object in position of measuring device placed in the front door and the balcony door that are not encumbered by leaks caused by a security hardware and by other specific elements


Author(s):  
Yi Wu ◽  
Claire Flemmer

Glass curtain wall provides an attractive building envelope, but it is generally regarded as unsustainable because of the high energy needed to maintain thermal comfort. This research explores the advances in the technology of glass cladding and the complex issues associated with judging its sustainability. It assesses the technology and sustainability of glass curtain wall on a sample of thirty commercial buildings in Auckland, New Zealand. Field observations of the glass-clad buildings, coupled with surveys of the building occupants and of glass cladding professionals are used to investigate the cladding characteristics, operational performance, sustainability aspects and future trends. The majority of the sample buildings are low-rise office buildings. The occupants like the aesthetics and indoor environment quality of their glass-clad buildings. However, continuous heating, ventilation and air conditioning are needed in order to maintain thermal comfort within the buildings and this has high energy consumption. The increasing use of unitized systems with double glazing instead of stick-built systems with single glazing improves the sustainability of the cladding through less material wastage and better energy efficiency. Inclusion of photovoltaic modules in the curtain wall also improves energy efficiency but it is currently too expensive for use in New Zealand. Environmental sustainability is also improved when factors such as climate, the orientation of glazed façades, solar control, ventilation and the interior building layout are considered. Any assessment of glass curtain wall sustainability needs to consider the economic and social aspects as well as the environmental aspects such as energy use


Sign in / Sign up

Export Citation Format

Share Document