Analysis of Bridge Pier’s Dynamic Characteristics Considering Fluid-Solid Interface Coupling

2014 ◽  
Vol 1049-1050 ◽  
pp. 464-468
Author(s):  
Chen Hui Jin ◽  
Bo Ming Zhao ◽  
Run Bo Bai

In the study of bridge pier’s dynamic characteristics, the modal analysis is the foundation of other dynamic analysis and is of great significance for studying other dynamic performance. Based on the dynamic theory of fluid-solid interface coupling, a 3D water-structure coupling finite element modal is established and computed by ANSYS. To verify the validity of the calculation results, the results of finite element software is compared with the analytical solutions in reference books. The analysis indicated that the results of finite element software are reasonable when the radius of bridge pier is five times the radius of water body. The ratio of water depth and the bridge pier’s height has a great influence on the change scale of bridge pier’s frequency. With the increase of bridge pier’s height-diameter ratio, the first three order natural vibration frequency is reduced.

2019 ◽  
Vol 815 ◽  
pp. 223-228
Author(s):  
Qin Tian ◽  
Cheng Hao Hang ◽  
Yun Peng Zou ◽  
Zi Xin Wan

In order to improve the mechanical behaviour of bridge steel hoops, the plate shell finite element models of several steel hoops were established by using the general finite element software ABAQUS. Through changing the structural parameters of the stiffening plates, the influence of the stiffening plates on the mechanical properties of the steel hoops was explored. The calculation results show that the stress distribution at both ends of the steel hoop is uneven and there is a phenomenon of stress concentration. The spacing of stiffening plates has great influence on the mechanical properties of steel hoop. Some measures to improve the mechanical properties of steel hoop are given.


2017 ◽  
Vol 730 ◽  
pp. 548-553
Author(s):  
Jing Ge ◽  
Hao Jiang ◽  
Zhen Yu Sun ◽  
Guo Jun Yu ◽  
Bo Su ◽  
...  

In this paper, we establish the mechanical property analysis of Single-walled Carbon Nanotubes (SWCNTs) modified beam element model based on the molecular structural mechanics method. Then we study the mechanical properties of their radial direction characteristics using the finite element software Abaqus. The model simulated the different bending stiffness with rectangular section beam elements C-C chemical force field. When the graphene curled into arbitrary chirality of SWCNTs spatial structure, the adjacent beam position will change the moment of inertia of the section of the beam. Compared with the original beam element model and the calculation results, we found that the established model largely reduced the overestimate of the original model of mechanical properties on the radial direction of the SWCNTs. At the same time, compared with other methods available in the literature results and the experimental data, the results can be in good agreement.


Author(s):  
Татьяна Георгиевна Рытова ◽  
Людмила Анатольевна Максимова ◽  
Анастасия Георгиевна Николаева ◽  
Татьяна Михайловна Макарова ◽  
Надежда Георгиевна Пфаненштиль

Приводится анализ частоты собственных колебаний большепролетной фермы с фланцевыми соединениями. Выполнен расчет фланцевого соединения с различными случаями исключения болтов из работы соединения. Анализ результата расчета показал, что возникновение повреждений и дефектов конструкций здания в локальных зонах, величина которых несущественно снижает общую жесткость каркаса, практически не влияет на динамические характеристики каркаса. The analysis of the natural vibration frequency of a large-span truss with flanged connections is given. The calculation of the flange connection with various cases of exclusion of bolts from the connection operation is performed. Analysis of the calculation results showed that the occurrence of damage and defects in the building structures in local areas, the value of which significantly reduces the overall rigidity of the frame, practically does not affect the dynamic characteristics of the frame.


2021 ◽  
Vol 2113 (1) ◽  
pp. 012061
Author(s):  
Jianmin Wang ◽  
Dong Liu ◽  
Yi Bian

Abstract The finite element modelling, mesh generation and modal analysis of the rotor worktable are carried out by combining the analysis technology of finite element software in this paper. Then, the software analysis results and the actual experimental results are compared and analyzed, so as to get the causes of error, which can provide good basic data for the use of the rotor table in the future that could better meet the needs of scientific research and teaching.


2017 ◽  
Vol 9 (1) ◽  
pp. 168781401668335
Author(s):  
Xiaoli Qi ◽  
Xiaochun Yin

This part of the article describes numerical simulations of the problem investigated experimentally. A three-dimensional finite element model of elastic–plastic for sphere falling on beam has been implemented using the nonlinear dynamic finite element software LS-DYNA. From the numerical simulations, it was found that the LS-DYNA is suitable to study complex sub-impact phenomenon, and good agreement is in general obtained between the simulation and experimental results. The numerical simulations show that the initial impact velocity, equivalent elasticity modulus, contact curvature radius of the sphere, and equivalent mass have great influence on the contact–impact time of the sub-impact, and an applicable range of the theoretical expression of contact–impact time of the sub-impact was determined. In addition, the numerical simulations demonstrate the ratios of maximum amplitudes of the first-, second-, and third-order vibrations to the maximum amplitudes of the beam vibrations, and the phase angle of the first-order vibration will change suddenly when the sub-impacts occur. Furthermore, the occurrence conditions of the sub-impacts were clarified numerically. It was found that the occurrence conditions of the sub-impacts can be represented by a mass ratio threshold, and the thickness or length of the beam has also a great influence on the occurrence of the sub-impacts. Once the sub-impacts occur, which would result in an uncertain behavior of the apparent coefficient of restitution.


2018 ◽  
Vol 196 ◽  
pp. 02010
Author(s):  
Viacheslav Shirokov ◽  
Alexey Soloviev ◽  
Tatiana Gordeeva

The research paper focuses on internal forces determination in the elements of modular buildings under wind load. It provides a methodology for determining dynamic characteristics of a building and for calculating wind loads. This method is based on the following assumptions: coupling of the modules elements is rigid; coupling of block-modules with foundations is hinged-fixed; connection of blocks to each other is hinged in angular points; the floor disk in its plane is not deformed. On the basis of these assumptions the authors derived approximate and refined equations for determining forces in modules elements under static and pulsation components of wind load. The equation of bending moments determination in the pillar bearing cross-section is obtained by approximation of the graph of moments variation, calculated for the spectrum of the ratio of the pillar stiffness and the floor beam in the range from 1/64 to 64. The paper further introduces the calculation results of forces based on the proposed methodology and on the finite element method. The calculations were done while taking different values of wind load and different number of storeys in a building (from 1 to 4 floors). The obtained results are similar, the error does not exceed 5%.


2012 ◽  
Vol 201-202 ◽  
pp. 24-29
Author(s):  
Shao Yong Zheng ◽  
Yu Guo Cui ◽  
Fan Fang

In order to obtain good static and dynamic characteristics of the 2-DOF micro-positional stage, improved design of developed stage were done. First, the part of displacement coupling for the stage was improved, which making the stage only have linear displacement at driving direction; Second, in order to acquire the highest natural frequency under the condition of given output displacement, micro-positional stage was designed by using the size optimization method. Finally, the static and dynamic characteristics of the stage were analyzed by the finite element software ANSYS. The finite element results show that: the stage completely eliminates the displacement coupling after improving design; under the condition of given 30 μm output displacement, natural frequency reaches 1.86 kHz.


2011 ◽  
Vol 255-260 ◽  
pp. 952-956
Author(s):  
Jian Ping Sun ◽  
Jian Ping Chen ◽  
Gang Li

The reasons why the producing of the difference in temperature distributing and thermal stresses of box aqueduct under solar radiation are analyzed. The difference in temperature distributing and thermal stresses are effectively simulated by the finite element software ANSYS.The calculation results indicate that concrete box aqueduct body inter-surface whatever along the longitudinal and transverse will produce considerable thermal stresses under solar radiation, and its value has exceeded the design of concrete tensile strength. Therefore, the thermal stresses under the solar radiation must be considered in the design of box aqueduct body structural. We should appropriately configure temperature reinforcing steel bar.


2014 ◽  
Vol 638-640 ◽  
pp. 322-325
Author(s):  
Yue Zhao ◽  
Duan Duan Zhao ◽  
Qin Han Jiang

In this paper, based on the finite element method, the K type common jacket structure connection in the form of positive connection and reverse connection conditions is being do comparative analysis. Research focus on dynamic characteristics, including of power spectrum analysis under the action of random vibration and fatigue properties of two kinds of connection type structure. The calculation results show: the inverted K type connection of jacket structure is about 10% increase in the stiffness and the dynamic performance, the inverted K type connection form is more worthy of popularization and application in engineering.


2010 ◽  
Vol 163-167 ◽  
pp. 74-78
Author(s):  
Hai Yun Huang ◽  
Xiang Rong Yuan ◽  
Ka Hong Cai

The dynamic characteristics are not only the important indexes for evaluating the bridge structural rigidity, but also the principal parameters for structural dynamic analysis and earthquake resistant analysis. In this paper, a three dimensional solid finite element model for a butterfly-shape arch bridge in Zhongshan city was established to analyze the dynamic characteristics. By comparison the numerical calculation results with measured results of the dynamic loading test, an analysis and evaluation of the dynamic performance of this new type spatial arch bridge was made, and can serve as reference to the dynamic analysis and seismic design of similar bridges.


Sign in / Sign up

Export Citation Format

Share Document